Does Gen6x4 Make Sense for SSDs Claiming 25W Due to Form Factor Recommendations?

Steven Wells – Fellow
Suresh Rajgopal - Distinguished Engineer
Trends to Gen6 suggest > 25W

- Power efficiency trends at each PCIe® Generation are not keeping up with the ~2x speed of each generation
 - Gen5 20-25W → Gen6 > 25W
- EDSFF informatively suggested E1.S and E3.S 1T target a maximum of 25W
- Are there options to benefit from Gen6 without moving to >25W FF such as E3.S 2T, E1.L or E3.L.
What Options do we have?

- Abandon harder to cool form factors overall as we move to Gen6
- Keep the form factors but limit to a maximum 25W power state
- Higher operating temperatures and/or higher airflows with higher power states
- Other “out of box” thinking

This presentation will hopefully offer insights to how to rethink power and thermals mitigations at both the Host and SSD while remaining aligned to NVMe™.
Summary of NVMe™ SSD Standards for Power and Thermals

Power
- Drive reports a table of possible active power states
 - PS0 = highest power state
 - PS1-n = lower power states
- “Host may dynamically modify the power states” using Features Command, optionally persistent
- PCIe® slot power limit needs to be honored

Thermals
- Composite Temperature
- Host Controlled Thermal Management (HCTM)
- Set feature offers
 - TMT1 – temperature (K) to start throttling
 - TMT2 – “heavy throttling”
- Drive can select VU thermal actions or can transition power states
- Warning and critical thermal notifications.
 (WCTEMP/CCTEMP)
Other Relevant Standards Impacting Power/Thermals

- EDSFF – the well known 25W and 40W “recommended maximum sustained power”

- OCP – Sets a paradigm that thermal throttling is only for failure conditions
OCP Power Measurement Guidance

- Sub 100uS peaks are covered by filter capacitors

- Peak Power (100us window) is beyond what on-board capacitors can filter - required on platform regulators to track noise; IR drop and brown-out conditions

- Max Average is typically considered thermally relevant (1 second or greater)
How fast can temp change in E1.S and E3.S?

- Composite temperature change during operation*
 - E1.S 15mm - smaller FF
 - 0.5-0.75 degrees per sec from Idle
 - E3.S 2T - larger FF
 - Less than 0.25 degrees per sec from Idle

Depending on FF and system airflow capabilities, the temperature gradient is between 0.25-1C/s
Max Average Power from a real workload

ML Perf Storage (UNET 3D) – Medical Image Segmentation

Real workloads are bursty

8W

2W

Steady State Sequential Write
SSD Internal Power and Thermal Throttling – One Possible Conceptual Implementation

1. **Host Cmd Ingress**
 - **Cmd Decode**
 - **Schedule “Back End”**
 - GC
 - Refresh
 - **NAND Command Ingress**

2. **Temperature-based derating (d)**
 - CTemp
 - d

3. **Multiplier (d x PS)**
 - NVMe™ Power State Target (PS)

4. **Power Needed > Max Power Allowed?**
 - **Power Needed**
 - **Max Power Allowed**
 - **Y**
 - **N**

5. **Stalling induces latencies**
 - **Stall**
 - **Execute**

Composite SSD temp

- 40W, 25W, 20W, 15W, etc.
Latency Impacts to Throttling

Mixed workload read latencies during 2 NVMe™ power states

- Cases with throttling will have extended NVMe™ command completion latencies (avg and/or tails)
- The goal is to minimize residency in throttling
Workload Managed by Host Initiated Power States

Rate of host polling and power state policy is host dependent

~60% throttling residency

Conceptual Example

Oscillating Power States Creates Oscillating Latency Distributions
HCTM Throttling

Example Latency Distributions across power states

HCTM enables stable latency distribution on stable workloads
Three Options for Power Management

<table>
<thead>
<tr>
<th>Power State Aligned with FF recommendations</th>
<th>Host Managed Dynamic Drive Power States</th>
<th>Drive Managed Progressive Thermal Throttling (HCTM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host or device manufacture sets default power state. Unmodified over device life.</td>
<td>Host periodically polls CTEMP and changes drive power state. Polling frequency important.</td>
<td>Host configures TMT1/2</td>
</tr>
<tr>
<td>Greater throttling residency</td>
<td>Reduced throttling residency</td>
<td>Drive internally polls CTEMP and adjusts throttling progressively.</td>
</tr>
<tr>
<td>Throttling when not always thermally necessary.</td>
<td>Throttle when thermally necessary.</td>
<td>Reduced throttling residency.</td>
</tr>
<tr>
<td>Full Gen6x4 burst not available.</td>
<td>Latency profiles shift for each power state command issued.</td>
<td>Consistent latency profile to a steady state workload.</td>
</tr>
<tr>
<td></td>
<td>Enables Gen6x4 Burst Capability.</td>
<td>Reduced thermal stress on drive components.</td>
</tr>
</tbody>
</table>

Two options to enable dynamic bursting above FF limits when thermal margin exists.
Call to Action

- **Devices**
 - Respecting PCIe® Slot Power
 - Supporting NVMe™ PS0 above “thermal TDP”
 - Progressive Thermal Throttling vs emergency throttling

- **Hosts**
 - Host to determine best methods between BMC managed burst power states and/or drive managed HCTM
 - Participate in SNIA Storage Management Initiative, OCP HW management, and Linux Foundation’s OpenBMC

- **Future**
 - Standardized power efficiency metrics similar to Client’s battery life workload.
Please take a moment to rate this session.

Your feedback is important to us.