Massively scalable storage for stateful containers on Azure

Malcolm Smith, Principal Software Engineer | Vybava Ramadoss, Principal Product Manager
AGENDA

• Stateful workloads challenges

• Azure Container Storage overview

• Architecture deep dive and extensibility

• Elastic SAN Overview

• Scaling with Azure Elastic SAN
Run large scale stateful container workloads with scalable, performant, available and cost-effective Storage
Challenges
Existing solutions built for IaaS centric architecture and retrofitted to containers

Unable to match the scale out speed and target of containers (pods)

Slow pod failover resulting in degraded availability of stateful containers

Limited coverage of available storage offerings
Azure Container Storage overview
Why Azure Container Storage

Industry’s first platform-managed container storage offering

- Reduced Total Cost of Ownership (TCO)
- Kubernetes-native volume orchestration
- Rapid scale out and fast failover
- Unified management experience for the storage of your choice

Azure Kubernetes Cluster

Pod

PV

PV

Azure Container Storage

Backing Storage (RWO)

Azure Disk

Ephemeral Disk

Azure Elastic SAN
Inside Azure Container Storage

Azure Kubernetes Service (AKS) Cluster

- Pod
 - PV
 - NVMe-oF
 - PV

Azure Container Storage

- Direct attach to node
 - Volume
 - NVMe
 - Ephemeral Disk

- Direct attach to node
 - Volume
 - Disk
 - Azure Disks

- iSCSI
 - Volume
 - Azure Elastic SAN

Storage Pools
Use Persistent Volumes with Containers

Operators

- Enable Extension
- AKS Cluster
 - Enable Extension
 - Pool Name
 - Pool Capacity
 - Pool Resource
 - Extension Deployed
 - Storage Pool Created

Developers

- Persistent Volume Claim (PVC)
 - PVC Name
 - PVC Capacity
 - PVC Deployed
- Persistent Volume (PV)
 - Prepare Pod
 - PVC Mount Path
 - Deploy Pod
 - PV Mounted
Example

```yaml
apiVersion: containerstorage.azure.com/v1beta1
kind: StoragePool
metadata:
  name: azuredisk
  namespace: acstor
spec:
  poolType:
  azureDisk: {}
resources:
  requests: {"storage": 1Tb}
```

Storage Pool Definition

```bash
kubectl describe sc acstor-azuredisk
Provisioner:
containerstorage.csi.azure.com
Parameters:
acstor.azure.com/
storagepool = azuredisk,
proto = nvmf, repl = 1
```

```yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: statefulset-kafka
... spec:
  ... volumeClaimTemplates:
    - metadata:
      name: persistent-storage
    spec:
      storageClassName: acstor-azuredisk
      accessModes: ["ReadWriteOnce"]
      resources:
        requests:
          storage: 10Gi
```

Stateful Sets
Azure Container Storage
deep dive
Deep Dive

Protocols
- NVMeOF
- iSCSI

Data Services
- Snapshots
- Encryption
- Replication

Volume Provisioner
- Exposed as File
- Resource Provider: Externalize state

Capacity Provisioner
- Storage Pool
- Connect with CSI Drivers

Backing Storage
- Local NVMe
- Azure Disk
- Azure Elastic SAN
- Other

Extend storage provider capabilities
Shared provisioning
Handle multiple backends
Provides perf/scale options
Layering on the data services

Volume Snapshots
- Aligned with CSI Snapshot API
- Works with volume provisioner to restore snapshots
- Instant snapshot create and read using copy on write

Replication
- Storage pool configured with 1+ replicas
- Replication engine sync writes using n/2+1 quorum
- Round robin reads across replicas
- Checks for data integrity
Intelligent placement with capacity provisioner

Using Storage Pools

• Storage pool aggregates capacity and performance across homogenous storage in the cluster
• Dynamic placement decisions based on application performance and availability needs
• Enables parameterized capacity request mapping to storage pool with capability
 • E.g., 100 GB 20K IOPS volume can be served from Premium storage pool
• Understands Topology including multi-zone pools
• Provides a consistent experience by abstracting backing storage and adding capabilities as needed
Extensible to support multiple backing storage

- **Local SSD/NVMe**
- **Remote SSD/NVMe**

Local Disks
- Persistent volume
- nvme-of target
- Compression
- Encryption
- Replication
- Thin provisioning

Remote Disks
- Persistent volume
- nvme-of target
- Thin provisioning
- Compression
- Encryption
- Replication
- Remote SSD/NVMe

SAN
- Persistent volume
- nvme-of target
- Compression
- Encryption
- Replication
- Thin provisioning
- Remote SSD/NVMe
Azure Elastic SAN overview
Inside Azure Container Storage

Azure Kubernetes Service (AKS) Cluster

Pod

PV
PV

NVMe-oF

Pod

PV
PV

NVMe-oF

Pod

PV
PV

iSCSI

Storage Pools

Azure Container Storage

Volume NVMe

Ephemeral Disk

Volume Disk

Azure Disks

Volume Volume

Azure Elastic SAN

Direct attach to node

Direct attach to node

iSCSI

Volume NVMe
Why use SAN for Container Storage?

What is a traditional SAN?
• Pool of capacity and IOPS for a single group, accessible to any workload
• “Group” might be a company, department, or anything
• Workloads that shift within the “group” are interchangeable
• If the whole “group” is idle, we can do intelligent things like deduplication

Isn’t that a cloud?
• Clouds support multiple “groups”
• The goal is to ensure consistent and high resource utilization
• Shifting workloads trigger load balancing operations

Dynamic workloads want interchangeable storage
Introducing Azure Elastic SAN
A brand-new cloud native SAN solution

Industry’s first fully managed SAN offering in the cloud

- Deploy, manage, and host workloads on Azure with an end-to-end experience similar to an on-premises SAN
- Bulk provision storage to achieve massive scale (millions of IOPS, double-digit GB/s)
- Simplified provisioning, scaling, and access management, with redundancy built in
- Support standard industry protocol (iSCSI) for data access
- Rather than manage individual disks for each of your workloads, save time and money with a cloud-native SAN

Rather than manage individual disks for each of your workloads, save time and money with a cloud-native SAN
Elastic SAN

Provisioning resources and Billing

Two provisioning units: Base and Capacity-only

Billed on provisioned storage for capacity and performance

Operations include:

- Create Elastic SAN
- Update provisioned resources in base or capacity-only scale units
- Delete Elastic SAN
Volume Group

Applying security, encryption, data protection configurations

Configurations on the volume groups apply to all volumes within the group

A Elastic SAN can have up to 20 volume groups

Operations include:

- Create volume group
- Update network configurations
- Update encryption Settings
- Delete volume group
Volume

Data storage, the actual storage unit

Read/Write access over iSCSI

Dynamic pooling of provisioned performance targets

Operations include:
- Create volume
- Update volume size to scale up performance or capacity
- Delete volume
Azure Elastic SAN

Enabling container native scale

Share provisioned performance, achieve cost efficiency at scale

1 TiB Elastic SAN
5K IOPS provisioned

1+ GiB per Volume

Simplify volume management through grouping

Volume Group
Configuration applies

Volume

Integrate with Azure Container Storage via iSCSI

Pod
PV
iSCSI

*preview expected later this year
Azure Elastic SAN
dee deep dive
Inside Azure Storage (Recap)

Front-end layer
• Protocol endpoint
• Authentication/Authorization
• Metrics/logging

Partition layer
• Understands and manages our data abstractions
• Massively scalable key/value store
• Key ranges assigned to servers

Stream layer (Distributed File System)
• Data persistence and replication (JBOD)
• Append-only file system
Azure Storage multi-protocol support

Protocol frontend, versioning
Authentication, throttling, logging

Storage operations business logic

Front End layer

Protocol layer
- REST API
- iSCSI
- Others

Service layer
- Put
- Get
- Delete

Partition layer
Scaling with networked storage

Each network connection to a different front end
- Not limited by IOPS from a single storage server
- MPIO is well supported

Ubiquitous initiator support with iSCSI
- Integrate with Linux and Windows nodes

Not limited by “local” SCSI bus under a VM
- Can have far more storage devices attached
- Important for a VM hosting many containers

Expansion to other protocols in future
- Particularly for encryption-in-transit
- Talk to me about TLS-PSK
iSCSI target scaling with Elastic SAN

How do we scale containers with SAN?

• Containers may have short lifetime. Network connections are relatively fast to establish and terminate
• From a user perspective, authentication counts as part of connection cost
• Administratively simpler to have a fleet of containers and a pool of storage
• Should be able to allocate IOPS and capacity based on demand
Making storage interchangeable

Solution: sharding!

• If all storage exists on the same servers, shifting workloads won’t shift loads
• A frontend protocol – iSCSI or NVMe – can redirect requests as needed
• Sharding normally creates challenges for global state – think snapshots
• But here we have a single frontend
I lied.

• Depending on workload, one TCP connection might not be enough.
• Scaling “out” – lots of workloads, one connection each
• Scaling “up” – many connections for one workload
• Unlike traditional SAN, each connection is managed by a different physical server
• But the total count remains manageable – it’s possible to coordinate
Shard creation and deletion

- Shards have defined names, distributed via hash
- Shards can be created on demand
- Passing all state to describe a shard on every write is expensive
- Instead, if a shard is being created, it can query state from the volume
- Shard deletion occurs via background scans
- If a volume is gone, shard records that it has expired
Per Pool scaling up

• Each volume can be created on a different tenant
• Each volume is physically stored across a set of storage servers
• Each connection can be served by a different server
• Result: millions of IOPS, double-digit GBps, single digit millisecond latencies
Thank You

Please reach out to us at askcontainerstorage @ microsoft.com
Please take a moment to rate this session.

Your feedback is important to us.