SNIA Computational Storage Standards

Bill Martin
Jason Molgaard
Agenda

- Current status of SNIA Computational Storage Standardization
- Overview of SNIA CS Architecture
- Overview of SNIA CS API
- SNIA and NVMe™ Computational Storage
- CS and SDXI
Current Progress of TWG Output

• Architectural Document
 • v1.0 Released August 2022
 • Received the Most Innovative Memory Technology award at FMS 2022
 • v1.1 under development
 ▪ Security enhancements for multiple tenants (complete)
 ▪ Sequencing of Commands (in-progress)

• API
 • v0.8 public review version was available June 2022
 • v0.9 public review version available
 ▪ In SNIA Membership vote towards v1.0
Architecture Overview
Computational Storage Architecture

CSx = Computational Storage Device – CSP or CSD or CSA
A Deeper Dive of the CSx Resources

CSR - Computational Storage Resources are the resources available in a CSx necessary for that CSx to store and execute a CSF.

CSF - A Computational Storage Function is a set of specific operations that may be configured and executed by a CSE in a CSEE.

CSE - Computational Storage Engine is a CSR that is able to be programmed to provide one or more specific operation(s).

CSEE - A Computational Storage Engine Environment is an operating environment space for the CSE.

FDM - Function Data Memory is device memory that is available for CSFs to use for data that is used or generated as part of the operation of the CSF.

AFDM - Allocated Function Data Memory is a portion of FDM that is allocated for one or more specific instances of a CSF operation.
Security Considerations for v1.0

- Assumptions
 - The environment consists of a single physical host or virtual host with one or more CSxes
 - The host is responsible for the security of the ecosystem that the CSxes operate within
 - CSx security requirements are comparable to the security requirements common to SSDs/HDDs

- Privileged Access
 - Elevated privileges necessary for operations
Security Considerations for v1.1

- Assumptions
 - The environment consists of multiple physical hosts or multiple virtual hosts with one or more CSxes
 - CSx security requirements are comparable to the security requirements common to SSDs/HDDs in multi-tenant environment

- Trust Relationships
 - Elements required for a trust relationship are
 1. Identification
 - Exchanged between participating parties
 2. Authentication
 - Is done following identification
 - Exchange of authentication information is done with the same element as Identification
 3. Authorization
 - Is done following authentication
 - Authorizes specific actions on specific resources
 - May be done at a lower-level element than the element that was authenticated
 4. Access Control
 - Controls access to elements of the CSx that are within the scope of the authorization
 - May be access to a CSE, a CSEE, or a CSF

- Different elements of the trust relationship may be at different levels
 - Identification and Authentication may be at the CSx
 - Authorization may be at the CSEE within the CSx
 - Access Control may be at the CSF activated in the CSEE
Sequencing of Commands

- Enables sequences of CSFs to execute in succession
 - Sequence executes in-order
 - Allows multiple CSFs to execute with minimal host involvement

- Aggregator CSF
 - Manages execution of the sequence
 - Tracks completion status of each CSF
 - May be downloaded or Pre-installed
 - Fixed Sequence or Variable Sequence defined by parameters passed by the host

- Error Handling
 - May be handled by the host or the aggregator CSF
API Overview
SNIA Computational Storage APIs

- One set of APIs for all CSx types
- APIs hide device details
 - Hardware, Connectivity
- Abstracts device details
 - Discovery
 - Access
 - Device Management
 - Memory Management
 - alloc/free/init
 - Storage/Memory Access
 - Download
 - Execute CSFs
- APIs are OS agnostic
Computational Storage API

- For more information about the SNIA CS API, please attend:
 - “Programming Computational Storage with the SNIA API” by Oscar Pinto
SNIA and NVMe
Computational Storage
NVMe Computational Storage Architectural Components

- **Compute Namespaces**
 - Compute Engines
 - Programs
- **Programs** operate on data in Subsystem Local Memory
 - Allocated as Memory Range Set
 - Includes program input, output
- **NVM Namespaces**
 - Persistent storage of data
 - NVM
 - ZNS
 - KV
- Data is transferred between NVM Namespaces and SLM using the Memory Copy command

This presentation discusses NVMe work in progress, which is subject to change without notice.
Correlation of SNIA/NVMe terms

<table>
<thead>
<tr>
<th>SNIA Terms</th>
<th>NVMe Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Storage Engine</td>
<td>Compute Engine/Compute Namespace</td>
</tr>
<tr>
<td>Computational Storage Engine Environment</td>
<td>Virtual (Not currently defined)</td>
</tr>
<tr>
<td>Resource Repository</td>
<td>Programs</td>
</tr>
<tr>
<td>‧ Downloaded CSF and CSEE</td>
<td>‧ Downloaded programs</td>
</tr>
<tr>
<td>‧ Pre-loaded CSF and CSEE</td>
<td>‧ Device-defined programs</td>
</tr>
<tr>
<td>Activation</td>
<td>Activation</td>
</tr>
<tr>
<td>Function Data Memory (FDM)</td>
<td>Subsystem Local Memory (SLM)</td>
</tr>
<tr>
<td>Allocated FDM (AFDM)</td>
<td>Memory Range Set</td>
</tr>
<tr>
<td>Device Storage</td>
<td>NVM Namespaces</td>
</tr>
</tbody>
</table>
NVMe Computational Storage

- For more information about NVMe Computational Storage, attend:
 - “NVMe Computational Storage Standards” by Kim Malone and Bill Martin
CS and SDXI Collaboration
SDXI (Smart Data Accelerator Interface)

- Smart Data Accelerator Interface (SDXI) is:
 - A SNIA standard for a memory to memory data movement and acceleration interface
 - Extensible
 - Forward-compatible
 - Independent of I/O interconnect technology
 - Provides data transformation features

- v1.0 was published November 2022
 - https://www.snia.org/sdxi
Combined SDXI+CS Architecture

- SDXI used for data movement with Computational Storage used for compute
- Multiple SDXI producers in a CS Architecture
- SDXI enables data movement across multiple AFDM regions
CS + SDXI

- For more information about CS + SDXI, please attend:
 - “Envisioning a Computational Storage Architecture with an SDXI Data Mover: Early Efforts” by Shyam Iyer and Jason Molgaard

- For more information about SDXI, please attend:
 - “SNIA SDXI Specification v1.0 and Beyond” by Shyam Iyer
Interested? Join Us!

- Join SNIA: https://www.snia.org/member_com/join-SNIA

- Join the Computational Storage TWG: https://members.snia.org/workgroup/index
Please take a moment to rate this session.

Your feedback is important to us.