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NVMe passthrough
What does it mean for the SPDK NVMe driver?
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How (and why) did SPDK start?

• “We have all of these SAS SSDs in this system, but 
can’t get all of the performance out of them.”

Meeting with enterprise storage 
company

• The performance problem was only going to get 
worse!

NVMe ratified but not yet 
commercially available

• Including BSD-licensed FreeBSD driversOS support for NVMe ramping 
quickly

• DPDK already tackling this same problem for 
network packet processing

Intel® Storage Group merged with 
division responsible for DPDK

Timeline: 2013
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SPDK’s Motivation

Break the software bottleneck for high-performance 
storage workloads

Build an open-source community to innovate and 
collaborate

Balance between ”develop new” and “optimize 
existing”

Broad set of abstractions and implementations
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SPDK and NVMe

• Performant and efficient NVMe access is priority #1!Break the software 
bottleneck

• Collaboration with xNVMe and Linux kernelBuild an open-source 
community

• Improve SPDK’s ability to leverage Linux NVMeBalance between “develop 
new” and “optimize existing”

• Enable multiple ways of accessing NVMe with SPDKBroad set of abstractions and 
implementations 
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Outline

Why
 What do you do, when the OS storage abstractions fail?
 What do you do, when the deployment environments fail?

What
 Device handles via generic and anonymous namespaces (e.g. /dev/ng0n1)
 Device communication via io_uring command (with NVMe Passthrough)
 SPDK Integration: xNVMe and bdev_xnvme

Performance Comparison
Next Steps
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Why? 1/2
General storage abstractions
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Why: storage abstractions

• Generic abstractions
• Supporting a variety of devices in the 

same fashion

• Long-lived and well-known 
abstractions of blocks and files

• When/how/why do abstractions 
fail for NVMe?

Linux
Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

Speak NVMe
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Why: storage abstractions “speaking NVMe”

Speaking NVMe
 Read/write using extended LBA formats
 Ext: directives / write_zeroes / copy
 ZNS: mgmt. send/receive, append
 Key-Value:

store(k,v) / retrieve(v), list, delete, exists
 New command-sets:

Computational Storage

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

Speak NVMe

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

sync
Ioctl()

Speak NVMe



10 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: storage abstractions “speaking NVMe”

Speaking NVMe
 Read/write using extended LBA formats
 Ext: directives / write_zeroes / copy
 ZNS: mgmt. send/receive, append
 Key-Value:

store(k,v) / retrieve(v), list, delete, exists
 New command-sets:

Computational Storage
Abstraction failure; must bypass 

OS abstractions to utilize devices

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

Speak NVMe

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

sync
Ioctl()

Speak NVMe
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Why: device handles

Everything is a file with NVMe represented as
 NVMe Controllers as char devices (e.g. /dev/nvme0)
 NVMe Namespaces as block devices (e.g. /dev/nvme0n1)

 Caveat: only for NVM and ZNS Command-Sets
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Why: device handles

Everything is a file with NVMe represented as
 NVMe Controllers as char devices (e.g. /dev/nvme0)
 NVMe Namespaces as block devices (e.g. /dev/nvme0n1)

 Caveat: only for NVM and ZNS Command-Sets

Plug in a device with a command-set other than NVM/ZNS
 Only the controller handle appears (e.g. /dev/nvme0)
 Device does not fit, or match assumptions of, the Linux Block Device model
 No representation of / FS entry to get a handle to the namespace
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Why: device handles

Everything is a file with NVMe represented as
 NVMe Controllers as char devices (e.g. /dev/nvme0)
 NVMe Namespaces as block devices (e.g. /dev/nvme0n1)

 Caveat: only for NVM and ZNS Command-Sets

Plug in a device with a command-set other than NVM/ZNS
 Only the controller handle appears (e.g. /dev/nvme0)
 Device does not fit, or match assumptions of, the Linux Block Device model
 No representation of / FS entry to get a handle to the namespace

Abstraction failure; no means to get a handle to the namespace
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Why: device communication

Efficiency via io_uring
 reducing the cost of crossing the border 

between userland and kernel
Shared memory (rings)
 Instead of memory-transfers

Resource registration
 Reduce lookup-cost

Polling (IOPOLL | SQPOLL)
Batching
 One syscall  multiple commands

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

Speak NVMe

io_uring command opcodes

IORING_OP_(READ|WRITE)V

IORING_OP_(READ|WRITE)

IORING_OP_(READ|WRITE)_FIXED

 



15 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: device communication

Efficiency via io_uring
 reducing the cost of crossing the border 

between userland and kernel
Shared memory (rings)
 Instead of memory-transfers

Resource registration
 Reduce lookup-cost

Polling (IOPOLL | SQPOLL)
Batching
 One syscall  multiple commands

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

Speak NVMe

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

sync
Ioctl()

Speak NVMe

io_uring command opcodes

IORING_OP_(READ|WRITE)V

IORING_OP_(READ|WRITE)

IORING_OP_(READ|WRITE)_FIXED

✘ 
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Why: device communication

Speaking NVMe
 Read/write using extended LBA formats
 Ext: directives / write_zeroes / copy
 ZNS: mgmt. send/receive, append
 Key-Value: store(k,v) / retrieve(v), list, delete, exists
 New command-sets: Computational Storage

Facility: NVMe driver ioctl()

ioctl()
no scale

Ioctl() + threadpool
in-efficient scale

io_uring
efficient scale
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Why: device communication

Speaking NVMe
 Read/write using extended LBA formats
 Ext: directives / write_zeroes / copy
 ZNS: mgmt. send/receive, append
 Key-Value: store(k,v) / retrieve(v), list, delete, exists
 New command-sets: Computational Storage

Facility: NVMe driver ioctl()
Abstraction failure; no kernel facility to “Speak NVMe” efficiently

ioctl()
no scale

Ioctl() + threadpool
in-efficient scale

io_uring
efficient scale
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Existing solutions

Move the storage abstraction out of the kernel and into userland

The SPDK Block Device abstraction (bdev)
The SPDK NVMe driver

So, when does this fail?
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Why? 2/2
Deployment Environments
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Why: deployment environments

Deployment of SPDK Apps using the SPDK NVMe driver
 Requirement: detach the Kernel NVMe driver  bind to vfio-pci/uio_generic
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Why: deployment environments

Deployment of SPDK Apps using the SPDK NVMe driver
 Requirement: detach the Kernel NVMe driver  bind to vfio-pci/uio_generic

HW Failure
 Other devices in the same iommu-group  No detachment
 Unsupported IOMMU / PCIe bar address-space  binding failure
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Why: deployment environments

Deployment of SPDK Apps using the SPDK NVMe driver
 Requirement: detach the Kernel NVMe driver  bind to vfio-pci/uio_generic

HW Failure
 Other devices in the same iommu-group  No detachment
 Unsupported IOMMU / PCIe bar address-space  binding failure

Cloud failure
 Sheer lack of NVMe devices  Encapsulated storage-device-services
 Restrictive environments
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Why: io_uring command for SPDK?

What do you do, when the deployment environment fails?
Fallback: operating system managed (bdev_aio / bdev_uring )
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Why: io_uring command for SPDK?

What do you do, when the deployment environment fails?
Fallback: operating system managed (bdev_aio / bdev_uring )

Enable deployment of SPDK in environments otherwise unavailable
Enable deployment of SPDK with minimal performance hit
Goals of Linux and SPDK are aligned
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Why: goals for Linux

An open-ended representation of NVMe devices for existing and new 
NVMe Command-Sets with a fast-path for communication

Handles
 Bring up devices regardless of Linux device model match
Communication
Speak NVMe “natively”
Scale as efficiently as io_uring
Scale as efficiently as the SPDK NVMe Driver
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What? 1/3
Generic device handles
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What: a solution to handles

Handles
NVMe generic char interface e.g. /dev/ng0n1
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What: a solution to handles

Handles
NVMe generic char interface e.g. /dev/ng0n1
 Initial support: Linux 5.13 (June 2021)
 Brings up handles for namespaces with NVM and ZNS command-sets

Command-set independence: Linux 6.0
 Brings up handles for namespaces with any command-set
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What: a solution to handles

Handles
NVMe generic char interface e.g. /dev/ng0n1
 Initial support: Linux 5.13 (June 2021)
 Brings up handles for namespaces with NVM and ZNS command-sets

Command-set independence: Linux 6.0
 Brings up handles for namespaces with any command-set

Device files are provided regardless of a matching device model, 
thereby enabling handles for existing and future NVMe command-sets
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What? 2/3
Communication via io_uring command (io_uring_cmd)
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What: io_uring command

Generic facility to attach io_uring capabilities to a command provider
 Larger ring-entries embedding commands and their completions
Command Provider (driver, file-system, etc.)
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What: io_uring command

Generic facility to attach io_uring capabilities to a command provider
 Larger ring-entries embedding commands and their completions
Command Provider (driver, file-system, etc.)
One such command Provider is the NVMe driver
 Providing NVMe passthrough commands
 Commands defined equivalent to NVMe driver IOCTLs
 NVMe driver IOCTL extended with iovec support

note: this was a requirement enabling non-bounce-buffer 
utilization by the SPDK bdev abstraction
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What: io_uring command

Handles
Bring up devices regardless of
     Linux device model match
Communication
Speak NVMe “natively”
Scale as efficiently as io_uring?
Scale as efficiently as the SPDK
     NVMe Driver?

For more: see Kanchan Joshi’s
Linux Plumbers Conference slides
https://lpc.events/event/16/contributions/1382/attachments/1119/2151/LPC2022_uring-passthru.pdf

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

Speak NVMe

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

sync
Ioctl()

Speak NVMe

/dev/ng0n1

async
Io_uring_cmd




https://lpc.events/event/16/contributions/1382/attachments/1119/2151/LPC2022_uring-passthru.pdf
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What 3/3
SPDK Integration via xNVMe (bdev_xnvme)
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Core API
 Commands and Buffers
 Queues & Callbacks

Command-Set Helpers
 NVM read / write / write_zeroes / copy
 ZNS mgmt. send / receive / append
 KV store / retrieve / list / exists /delete

Command-Line Tools
 xnvme, lblk, zoned, kvs

CORE API

Sy
nc

hr
on

ou
s Asynchronous

Buffer(s)
Command(s)

Storage Device or File

Queue

Callback

Implementation
Linux

FreeBSD Windows

read()/write()

libaio
POSIX aio

IOCP
Block IOCTLs

NVMe IOCTLs

Thread Pools

DevFs / SysFS

io_uring

IORING

SPDK Driver

read()/write()

NVMe IOCTLs

Thread Pools

Win32
Object Model

Thread Pools

libvfn

io_uring_cmd
SPDK Driver

POSIX aio
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 xNVMe is used for
 I/O interface independence
 Minimal abstraction cost
 Convenient command-line tools
 Rapid experimentation via Python

 Further details
SYSTOR22 Presentation and Paper
https://www.youtube.com/watch?v=YoA6FVnc_pU
https://dl.acm.org/doi/abs/10.1145/3534056.3534936
Web: https://xnvme.io/

CORE API

Sy
nc

hr
on

ou
s Asynchronous

Buffer(s)
Command(s)

Storage Device or File

Queue

Callback

Implementation
Linux

FreeBSD Windows

read()/write()

libaio
POSIX aio

IOCP
Block IOCTLs

NVMe IOCTLs

Thread Pools

DevFs / SysFS

io_uring

IORING

SPDK Driver

read()/write()

NVMe IOCTLs

Thread Pools

Win32
Object Model

Thread Pools

libvfn

io_uring_cmd
SPDK Driver

POSIX aio

https://www.youtube.com/watch?v=YoA6FVnc_pU
https://dl.acm.org/doi/abs/10.1145/3534056.3534936
https://xnvme.io/
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SPDK Integration: bdev_xnvme

With SPDK v22.09 a new bdev 
module is introduced: bdev_xnvme
 The xNVMe bdev module calls into

the core xNVMe API
A single bdev implementation for
 libaio, io_uring, and io_uring_cmd
 Device-specific handling (zone mgmt.)

 Further details, Krishna K. Reddy
 SDC Presentation
https://www.youtube.com/watch?v=WbdCht6f_tU

Applications

BlobFS

Blobstore

BDEV Abstraction Layer
BDEV Modules

SPDK 
Drivers Linux

HARDWARE

NVMe

Virtio

aio xNVMe

io_uringaio io_uring PT

xNVMe
libaio io_uring_cmdio_uring

uring

https://www.youtube.com/watch?v=WbdCht6f_tU
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Comparison: peak IOPS for saturated CPU
io_uring_cmd vs io_uring
io_uring_cmd vs SPDK NVMe Driver

SPDK Bdev implementations (aio, uring, xNVMe)
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Comparison: system and software

Core i5-12600, SMT enabled, Turbo-Boost disabled
 4x Samsung 980 Pro 1TB (512 RR ~1.0M IOPS / 4K RR 1.0M IOPS)
 4x Samsung 980 Pro 2TB (512 RR ~0.8M IOPS / 4K RR 0.8M IOPS)

Device roofline ~8M IOPS (according to spec. Sheet)
Software
 Linux 6.5
 fio 3.34
 xNVMe v0.7.1
 SPDK v23.04 + patches for xNVMe submodule updated to v0.7.1
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Comparison: system and software

 Linux Kernel version 6.5
 Debian Bullseye kernel config with the following changes
 CONFIG_BLK_CGROUP=N
 CONFIG_BLK_WBT_MQ=N
 CONFIG_HZ=250
 CONFIG_RETPOLINE=N
 CONFIG_PAGE_TABLE_ISOLATION=N

 NVMe driver loaded with as
 modprobe -r nvme && modprobe nvme poll_queues=1
 /sys/block/{device}/queue/iostats set to 0
 /sys/block/{device}/queue/nomerges set to 2
 /sys/block/{device}/queue/wbt_lat_usec set to 0
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Comparison: system and software

 Tools
 fio: t/io_uring via "one-core-peak.sh“
 fio: t/io_uring manually invocation
 bdevperf

 Logs of all runs are provided for inspection and reproducibility
 https://github.com/safl/sceb

Also contains scripts, hw-info information, kernel-config etc.

https://github.com/safl/sceb
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io_uring vs. io_uring_cmd

#Devices Millions of 512 byte IOPS via io_uring

-n=#Devices
IOPOLL

-n2
-c16 –s16
IOPOLL

-n2
NOPOLL
NOBATCH

-n1
SQPOLL

1 1.17 1.16 1.16 1.16

2 2.32 2.32 1.33 2.33

3 2.24 3.18 1.35 2.54

4 2.18 4.16 1.36 2.39

5 2.10 4.12 1.38 2.43

6 2.03 3.97 1.39 2.50

7 2.03 3.82 1.39 2.36

8 2.02 3.97 1.39 2.36
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io_uring vs. io_uring_cmd

#Devices Millions of 512 byte IOPS via io_uring

-n=#Devices
IOPOLL

-n2
-c16 –s16
IOPOLL

-n2
NOPOLL
NOBATCH

-n1
SQPOLL

1 1.17 1.16 1.16 1.16

2 2.32 2.32 1.33 2.33

3 2.24 3.18 1.35 2.54

4 2.18 4.16 1.36 2.39

5 2.10 4.12 1.38 2.43

6 2.03 3.97 1.39 2.50

7 2.03 3.82 1.39 2.36

8 2.02 3.97 1.39 2.36

#Devices Millions of 512 byte IOPS via io_uring_cmd

-n=#Devices
IOPOLL

-n2
-c16 –s16
IOPOLL

-n2
NOPOLL
NOBATCH

-n1
SQPOLL

1 1.16 1.16 1.16 1.16

2 2.32 2.31 1.33 2.30

3 2.23 3.26 1.35 2.54

4 2.18 4.10 1.37 2.52

5 2.09 4.35 1.38 2.42

6 2.03 4.63 1.39 2.49

7 2.02 4.86 1.38 2.51

8 2.02 4.85 1.38 2.39
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Eval: goals for Linux

An open-ended representation of NVMe devices for existing and new 
NVMe Command-Sets with a fast-path for communication

Handles
 Bring up devices regardless of Linux device model match
Communication
Speak NVMe “natively”
Scale as efficiently as io_uring
Scale as efficiently as the SPDK NVMe Driver?





Peak IOPS in Millions

io_uring 4.16

io_uring_cmd 4.86
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Comparison: IOPS via SPDK

 I/O generator
 bdevperf –q 128 –o 512 –w randread –t10 <bdev_conf> -m 

<variations>

 Two variations
 -m[0]; using a single core and no thread-sibling 
 -m[0,1]; using a single core and its thread-sibling
 Equivalent comparison of SMT effect as is done by t/io_uring
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Comparison: IOPS via SPDK

# Devices Millions of 512 byte IOPS
via the SPDK NVMe Driver

-m[0] -m[0,8]

1 1.15 1.15

2 2.31 2.30

3 3.34 3.31

4 4.35 4.34

5 5.22 5.22

6 6.11 6.10

7 7.11 7.10

8 7.24 8.08

Satures a single SMT thread
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Comparison: IOPS via SPDK

# Devices Millions of 512 byte IOPS
via the SPDK NVMe Driver

-m[0] -m[0,8]

1 1.15 1.15

2 2.31 2.30

3 3.34 3.31

4 4.35 4.34

5 5.22 5.22

6 6.11 6.10

7 7.11 7.10

8 7.24 8.08

Why the gap?

Generic facility
 Does more than specialized user-space driver
 Taps into generic kernel-infra
 io_uring_cmd specific I/O path reduction

Un-tapped optimizations
 Management of DMA Mapping

Peak IOPS in Millions

io_uring 4.16

io_uring_cmd 4.86

SPDK 8.08
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Eval: goals for Linux

An open-ended representation of NVMe devices for existing and new 
NVMe Command-Sets with a fast-path for communication

Handles
 Bring up devices regardless of Linux device model match
Communication
Speak NVMe “natively”
Scale as efficiently as io_uring
Scale as efficiently as the SPDK NVMe Driver?

Peak IOPS in Millions

io_uring 4.16

io_uring_cmd 4.86

SPDK 8.08✗
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Comparison: bdev implementations

Compare the following
 bdev_xnvme vs bdev_uring
 bdev_xnvme vs bdev_aio
 bdev_xnvme with io-mechanisms: libaio / io_uring / io_uring_cmd

Using bdevperf
 Compare single-device qd=1 for a sense of overhead
 Compare single-device qd=128 for a sense of scale

Provide the data to motivating next steps for bdev_xnvme
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Comparison:

SPDK bdevs using libaio
bdev_xnvme vs bdev_aio
bdev_xnvme: {io_mechanism=libaio}
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bdev_aio vs bdev_xnvme

1 Device 8 Devices

• bdev_xnvme at scale with bdev_aio
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Comparison:

SPDK bdevs using io_uring
bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring}
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bdev_uring vs bdev_xnvme

• bdev_xnvme at scale with bdev_uring 

1 Device 8 Devices
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bdev_uring vs bdev_xnvme

• bdev_xnvme at scale with bdev_uring 
• bdev_xnvme “out-scales” bdev_uring with IOPOLL enabled

1 Device 8 Devices
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Comparison:

SPDK bdev using io_uring_cmd
bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring_cmd}

Single device
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bdev_uring vs bdev_xnvme

• bdev_xnvme (io_uring_cmd)  > bdev_uring

1 Device1 Device
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bdev_uring vs bdev_xnvme

• bdev_xnvme (io_uring_cmd)  > bdev_uring
• bdev_xnvme (io_uring_cmd)  > bdev_xnvme (io_uring)

1 Device1 Device
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Comparison:

SPDK bdev using io_uring_cmd
bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring_cmd}

Multiple device
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bdev_uring vs bdev_xnvme

8 Devices 8 Devices

• bdev_xnvme (io_uring_cmd)  > bdev_uring
• Both with and without IOPOLL

• bdev_xnvme (io_uring_cmd)  > bdev_xnvme (io_uring)
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What are next steps?
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Next Steps: io_uring_cmd

Handles / Encapsulation
 I/O access-control matching file-permissions on /dev/ng*n*
 Disable CAP_SYS_ADMIN for identify-commands (ns,ns-cs,ctrlr,ctrlr-cs,etc.)
 Enable non-root access to device information such as maximum-data-transfer-
size (MDTS), device properties 

Communication
 Investigate potentials for large-block-sizes / hugepages
 Investigate DMA pre-mapping
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Next Steps: io_uring_cmd

Handles / Encapsulation
 I/O access-control matching file-permissions on /dev/ng*n*
 Disable CAP_SYS_ADMIN for identify-commands (ns,ns-cs,ctrlr,ctrlr-cs,etc.)
 Enable non-root access to device information such as maximum-data-transfer-
size (MDTS), device properties 

Communication
 Investigate potentials for large-block-sizes / hugepages
 Investigate DMA pre-mapping

 DONE
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Next Steps: bdev_xnvme

Efficiency; match the IOPS rate achieved by the other bdevs
 Exploring opportunities to enable batching
 Performance “policy” e.g. “conserve_cpu” to disable optimizations
 Otherwise: auto-enable io_uring optimizations where applicable and 

gracefully degrade in case of lacking system support
 Functionality
 NVM commands: Write Zeroes, Flush
 ZNS commands: (Zone Management Send/Receive)

Deployment on Windows (IOCP and IORING)
 Broaden SPDK deployment while matching interface efficiency
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Next Steps: bdev_xnvme

Efficiency; match the IOPS rate achieved by the other bdevs
 Exploring opportunities to enable batching
 Performance “policy” e.g. “conserve_cpu” to disable optimizations
 Otherwise: auto-enable io_uring optimizations where applicable and 

gracefully degrade in case of lacking system support
 Functionality
 NVM commands: Write Zeroes, Flush
 ZNS commands: (Zone Management Send/Receive)

Deployment on Windows (IOCP and IORING)
 Broaden SPDK deployment while matching interface efficiency






exceed
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Next Steps: xNVMe

Currently supported
 IORING_SETUP_{IOPOLL|SQPOLL|SINGLE_ISSUER}
 Resource-registration (files)
 Batching: done on-behalf of the user via delayed submission

Currently missing
 IORING_SETUP_{COOP|DEFER}_TASKRUN
 Resource-registration (buffers, rings)

General optimizations: sqe-reuse, alignment, command-
construction
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So, what does it mean for SPDK?

 The xNVMe bdev shows promise of encapsulating Linux kernel 
NVMe interface for the bdev abstraction
 Single bdev to handle libaio, io_uring, and io_uring_cmd
 Single bdev to handle zone-management

A wider range of deployment of SPDK Applications
Closer collaboration and integration of storage eco-systems
What does it mean for the SPDK NVMe driver?
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Thanks!

 Collaboration
 Reproducing io_uring_cmd vs SPDK NVMe benchmarks
 Linux Kernel io_uring_cmd optimizations
 SPDK bdev_xnvme optimizations and functional expansion
 xNVMe optimization and functional expansion
 Link to previous presentation at SPDK Virtual Forum 2022

 https://youtu.be/aYALmcP6PDU?si=H-TC_CJWgERzrd8W

 Contact
 SPDK Slack Channels: https://spdk-team.slack.com/
 Samsung GOST / xNVMe @ Discord: https://discord.gg/XCbBX9DmKf

https://youtu.be/aYALmcP6PDU?si=H-TC_CJWgERzrd8W
https://spdk-team.slack.com/
https://discord.gg/XCbBX9DmKf
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Please take a moment to rate this session. 
Your feedback is important to us. 
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