
1 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Virtual Conference
September 28-29, 2021

xNVMe and io_uring
NVMe passthrough
What does it mean for the SPDK NVMe driver?

Simon A. F. Lund (Samsung)

2 | ©2023 SNIA. All Rights Reserved.

Agenda

How (and why) did SPDK start?

SPDK’s Motivation

Linux Storage Abstractions

xNVMe Overview

Performance Comparisons

Next Steps

3 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

How (and why) did SPDK start?

• “We have all of these SAS SSDs in this system, but
can’t get all of the performance out of them.”

Meeting with enterprise storage
company

• The performance problem was only going to get
worse!

NVMe ratified but not yet
commercially available

• Including BSD-licensed FreeBSD driversOS support for NVMe ramping
quickly

• DPDK already tackling this same problem for
network packet processing

Intel® Storage Group merged with
division responsible for DPDK

Timeline: 2013

4 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

SPDK’s Motivation

Break the software bottleneck for high-performance
storage workloads

Build an open-source community to innovate and
collaborate

Balance between ”develop new” and “optimize
existing”

Broad set of abstractions and implementations

5 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

SPDK and NVMe

• Performant and efficient NVMe access is priority #1!Break the software
bottleneck

• Collaboration with xNVMe and Linux kernelBuild an open-source
community

• Improve SPDK’s ability to leverage Linux NVMeBalance between “develop
new” and “optimize existing”

• Enable multiple ways of accessing NVMe with SPDKBroad set of abstractions and
implementations

6 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Outline

Why
 What do you do, when the OS storage abstractions fail?
 What do you do, when the deployment environments fail?

What
 Device handles via generic and anonymous namespaces (e.g. /dev/ng0n1)
 Device communication via io_uring command (with NVMe Passthrough)
 SPDK Integration: xNVMe and bdev_xnvme

Performance Comparison
Next Steps

7 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why? 1/2
General storage abstractions

8 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: storage abstractions

• Generic abstractions
• Supporting a variety of devices in the

same fashion

• Long-lived and well-known
abstractions of blocks and files

• When/how/why do abstractions
fail for NVMe?

Linux
Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

Speak NVMe

9 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: storage abstractions “speaking NVMe”

Speaking NVMe
 Read/write using extended LBA formats
 Ext: directives / write_zeroes / copy
 ZNS: mgmt. send/receive, append
 Key-Value:

store(k,v) / retrieve(v), list, delete, exists
 New command-sets:

Computational Storage

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

Speak NVMe

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

sync
Ioctl()

Speak NVMe

10 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: storage abstractions “speaking NVMe”

Speaking NVMe
 Read/write using extended LBA formats
 Ext: directives / write_zeroes / copy
 ZNS: mgmt. send/receive, append
 Key-Value:

store(k,v) / retrieve(v), list, delete, exists
 New command-sets:

Computational Storage
Abstraction failure; must bypass

OS abstractions to utilize devices

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

Speak NVMe

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

sync
Ioctl()

Speak NVMe

11 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: device handles

Everything is a file with NVMe represented as
 NVMe Controllers as char devices (e.g. /dev/nvme0)
 NVMe Namespaces as block devices (e.g. /dev/nvme0n1)

 Caveat: only for NVM and ZNS Command-Sets

12 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: device handles

Everything is a file with NVMe represented as
 NVMe Controllers as char devices (e.g. /dev/nvme0)
 NVMe Namespaces as block devices (e.g. /dev/nvme0n1)

 Caveat: only for NVM and ZNS Command-Sets

Plug in a device with a command-set other than NVM/ZNS
 Only the controller handle appears (e.g. /dev/nvme0)
 Device does not fit, or match assumptions of, the Linux Block Device model
 No representation of / FS entry to get a handle to the namespace

13 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: device handles

Everything is a file with NVMe represented as
 NVMe Controllers as char devices (e.g. /dev/nvme0)
 NVMe Namespaces as block devices (e.g. /dev/nvme0n1)

 Caveat: only for NVM and ZNS Command-Sets

Plug in a device with a command-set other than NVM/ZNS
 Only the controller handle appears (e.g. /dev/nvme0)
 Device does not fit, or match assumptions of, the Linux Block Device model
 No representation of / FS entry to get a handle to the namespace

Abstraction failure; no means to get a handle to the namespace

14 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: device communication

Efficiency via io_uring
 reducing the cost of crossing the border

between userland and kernel
Shared memory (rings)
 Instead of memory-transfers

Resource registration
 Reduce lookup-cost

Polling (IOPOLL | SQPOLL)
Batching
 One syscall multiple commands

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

Speak NVMe

io_uring command opcodes

IORING_OP_(READ|WRITE)V

IORING_OP_(READ|WRITE)

IORING_OP_(READ|WRITE)_FIXED

15 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: device communication

Efficiency via io_uring
 reducing the cost of crossing the border

between userland and kernel
Shared memory (rings)
 Instead of memory-transfers

Resource registration
 Reduce lookup-cost

Polling (IOPOLL | SQPOLL)
Batching
 One syscall multiple commands

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

Speak NVMe

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

sync
Ioctl()

Speak NVMe

io_uring command opcodes

IORING_OP_(READ|WRITE)V

IORING_OP_(READ|WRITE)

IORING_OP_(READ|WRITE)_FIXED

✘

16 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: device communication

Speaking NVMe
 Read/write using extended LBA formats
 Ext: directives / write_zeroes / copy
 ZNS: mgmt. send/receive, append
 Key-Value: store(k,v) / retrieve(v), list, delete, exists
 New command-sets: Computational Storage

Facility: NVMe driver ioctl()

ioctl()
no scale

Ioctl() + threadpool
in-efficient scale

io_uring
efficient scale

17 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: device communication

Speaking NVMe
 Read/write using extended LBA formats
 Ext: directives / write_zeroes / copy
 ZNS: mgmt. send/receive, append
 Key-Value: store(k,v) / retrieve(v), list, delete, exists
 New command-sets: Computational Storage

Facility: NVMe driver ioctl()
Abstraction failure; no kernel facility to “Speak NVMe” efficiently

ioctl()
no scale

Ioctl() + threadpool
in-efficient scale

io_uring
efficient scale

18 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Existing solutions

Move the storage abstraction out of the kernel and into userland

The SPDK Block Device abstraction (bdev)
The SPDK NVMe driver

So, when does this fail?

19 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why? 2/2
Deployment Environments

20 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: deployment environments

Deployment of SPDK Apps using the SPDK NVMe driver
 Requirement: detach the Kernel NVMe driver bind to vfio-pci/uio_generic

21 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: deployment environments

Deployment of SPDK Apps using the SPDK NVMe driver
 Requirement: detach the Kernel NVMe driver bind to vfio-pci/uio_generic

HW Failure
 Other devices in the same iommu-group No detachment
 Unsupported IOMMU / PCIe bar address-space binding failure

22 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: deployment environments

Deployment of SPDK Apps using the SPDK NVMe driver
 Requirement: detach the Kernel NVMe driver bind to vfio-pci/uio_generic

HW Failure
 Other devices in the same iommu-group No detachment
 Unsupported IOMMU / PCIe bar address-space binding failure

Cloud failure
 Sheer lack of NVMe devices Encapsulated storage-device-services
 Restrictive environments

23 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: io_uring command for SPDK?

What do you do, when the deployment environment fails?
Fallback: operating system managed (bdev_aio / bdev_uring)

24 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: io_uring command for SPDK?

What do you do, when the deployment environment fails?
Fallback: operating system managed (bdev_aio / bdev_uring)

Enable deployment of SPDK in environments otherwise unavailable
Enable deployment of SPDK with minimal performance hit
Goals of Linux and SPDK are aligned

25 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Why: goals for Linux

An open-ended representation of NVMe devices for existing and new
NVMe Command-Sets with a fast-path for communication

Handles
 Bring up devices regardless of Linux device model match
Communication
Speak NVMe “natively”
Scale as efficiently as io_uring
Scale as efficiently as the SPDK NVMe Driver

26 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What? 1/3
Generic device handles

27 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What: a solution to handles

Handles
NVMe generic char interface e.g. /dev/ng0n1

28 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What: a solution to handles

Handles
NVMe generic char interface e.g. /dev/ng0n1
 Initial support: Linux 5.13 (June 2021)
 Brings up handles for namespaces with NVM and ZNS command-sets

Command-set independence: Linux 6.0
 Brings up handles for namespaces with any command-set

29 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What: a solution to handles

Handles
NVMe generic char interface e.g. /dev/ng0n1
 Initial support: Linux 5.13 (June 2021)
 Brings up handles for namespaces with NVM and ZNS command-sets

Command-set independence: Linux 6.0
 Brings up handles for namespaces with any command-set

Device files are provided regardless of a matching device model,
thereby enabling handles for existing and future NVMe command-sets

30 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What? 2/3
Communication via io_uring command (io_uring_cmd)

31 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What: io_uring command

Generic facility to attach io_uring capabilities to a command provider
 Larger ring-entries embedding commands and their completions
Command Provider (driver, file-system, etc.)

32 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What: io_uring command

Generic facility to attach io_uring capabilities to a command provider
 Larger ring-entries embedding commands and their completions
Command Provider (driver, file-system, etc.)
One such command Provider is the NVMe driver
 Providing NVMe passthrough commands
 Commands defined equivalent to NVMe driver IOCTLs
 NVMe driver IOCTL extended with iovec support

note: this was a requirement enabling non-bounce-buffer
utilization by the SPDK bdev abstraction

33 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What: io_uring command

Handles
Bring up devices regardless of
 Linux device model match
Communication
Speak NVMe “natively”
Scale as efficiently as io_uring?
Scale as efficiently as the SPDK
 NVMe Driver?

For more: see Kanchan Joshi’s
Linux Plumbers Conference slides
https://lpc.events/event/16/contributions/1382/attachments/1119/2151/LPC2022_uring-passthru.pdf

Userland

Kernel
IO Stack

Device

Syscall

Speak File

Speak Block

Speak NVMe

FS Abstraction

Block Abstraction

/dev/nvme0n1
NVMe Driver

sync
Ioctl()

Speak NVMe

/dev/ng0n1

async
Io_uring_cmd

https://lpc.events/event/16/contributions/1382/attachments/1119/2151/LPC2022_uring-passthru.pdf

34 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What 3/3
SPDK Integration via xNVMe (bdev_xnvme)

35 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Core API
 Commands and Buffers
 Queues & Callbacks

Command-Set Helpers
 NVM read / write / write_zeroes / copy
 ZNS mgmt. send / receive / append
 KV store / retrieve / list / exists /delete

Command-Line Tools
 xnvme, lblk, zoned, kvs

CORE API

Sy
nc

hr
on

ou
s Asynchronous

Buffer(s)
Command(s)

Storage Device or File

Queue

Callback

Implementation
Linux

FreeBSD Windows

read()/write()

libaio
POSIX aio

IOCP
Block IOCTLs

NVMe IOCTLs

Thread Pools

DevFs / SysFS

io_uring

IORING

SPDK Driver

read()/write()

NVMe IOCTLs

Thread Pools

Win32
Object Model

Thread Pools

libvfn

io_uring_cmd
SPDK Driver

POSIX aio

36 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

 xNVMe is used for
 I/O interface independence
 Minimal abstraction cost
 Convenient command-line tools
 Rapid experimentation via Python

 Further details
SYSTOR22 Presentation and Paper
https://www.youtube.com/watch?v=YoA6FVnc_pU
https://dl.acm.org/doi/abs/10.1145/3534056.3534936
Web: https://xnvme.io/

CORE API

Sy
nc

hr
on

ou
s Asynchronous

Buffer(s)
Command(s)

Storage Device or File

Queue

Callback

Implementation
Linux

FreeBSD Windows

read()/write()

libaio
POSIX aio

IOCP
Block IOCTLs

NVMe IOCTLs

Thread Pools

DevFs / SysFS

io_uring

IORING

SPDK Driver

read()/write()

NVMe IOCTLs

Thread Pools

Win32
Object Model

Thread Pools

libvfn

io_uring_cmd
SPDK Driver

POSIX aio

https://www.youtube.com/watch?v=YoA6FVnc_pU
https://dl.acm.org/doi/abs/10.1145/3534056.3534936
https://xnvme.io/

37 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

SPDK Integration: bdev_xnvme

With SPDK v22.09 a new bdev
module is introduced: bdev_xnvme
 The xNVMe bdev module calls into

the core xNVMe API
A single bdev implementation for
 libaio, io_uring, and io_uring_cmd
 Device-specific handling (zone mgmt.)

 Further details, Krishna K. Reddy
 SDC Presentation
https://www.youtube.com/watch?v=WbdCht6f_tU

Applications

BlobFS

Blobstore

BDEV Abstraction Layer
BDEV Modules

SPDK
Drivers Linux

HARDWARE

NVMe

Virtio

aio xNVMe

io_uringaio io_uring PT

xNVMe
libaio io_uring_cmdio_uring

uring

https://www.youtube.com/watch?v=WbdCht6f_tU

38 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison: peak IOPS for saturated CPU
io_uring_cmd vs io_uring
io_uring_cmd vs SPDK NVMe Driver

SPDK Bdev implementations (aio, uring, xNVMe)

39 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison: system and software

Core i5-12600, SMT enabled, Turbo-Boost disabled
 4x Samsung 980 Pro 1TB (512 RR ~1.0M IOPS / 4K RR 1.0M IOPS)
 4x Samsung 980 Pro 2TB (512 RR ~0.8M IOPS / 4K RR 0.8M IOPS)

Device roofline ~8M IOPS (according to spec. Sheet)
Software
 Linux 6.5
 fio 3.34
 xNVMe v0.7.1
 SPDK v23.04 + patches for xNVMe submodule updated to v0.7.1

40 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison: system and software

 Linux Kernel version 6.5
 Debian Bullseye kernel config with the following changes
 CONFIG_BLK_CGROUP=N
 CONFIG_BLK_WBT_MQ=N
 CONFIG_HZ=250
 CONFIG_RETPOLINE=N
 CONFIG_PAGE_TABLE_ISOLATION=N

 NVMe driver loaded with as
 modprobe -r nvme && modprobe nvme poll_queues=1
 /sys/block/{device}/queue/iostats set to 0
 /sys/block/{device}/queue/nomerges set to 2
 /sys/block/{device}/queue/wbt_lat_usec set to 0

41 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison: system and software

 Tools
 fio: t/io_uring via "one-core-peak.sh“
 fio: t/io_uring manually invocation
 bdevperf

 Logs of all runs are provided for inspection and reproducibility
 https://github.com/safl/sceb

Also contains scripts, hw-info information, kernel-config etc.

https://github.com/safl/sceb

42 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

io_uring vs. io_uring_cmd

#Devices Millions of 512 byte IOPS via io_uring

-n=#Devices
IOPOLL

-n2
-c16 –s16
IOPOLL

-n2
NOPOLL
NOBATCH

-n1
SQPOLL

1 1.17 1.16 1.16 1.16

2 2.32 2.32 1.33 2.33

3 2.24 3.18 1.35 2.54

4 2.18 4.16 1.36 2.39

5 2.10 4.12 1.38 2.43

6 2.03 3.97 1.39 2.50

7 2.03 3.82 1.39 2.36

8 2.02 3.97 1.39 2.36

43 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

io_uring vs. io_uring_cmd

#Devices Millions of 512 byte IOPS via io_uring

-n=#Devices
IOPOLL

-n2
-c16 –s16
IOPOLL

-n2
NOPOLL
NOBATCH

-n1
SQPOLL

1 1.17 1.16 1.16 1.16

2 2.32 2.32 1.33 2.33

3 2.24 3.18 1.35 2.54

4 2.18 4.16 1.36 2.39

5 2.10 4.12 1.38 2.43

6 2.03 3.97 1.39 2.50

7 2.03 3.82 1.39 2.36

8 2.02 3.97 1.39 2.36

#Devices Millions of 512 byte IOPS via io_uring_cmd

-n=#Devices
IOPOLL

-n2
-c16 –s16
IOPOLL

-n2
NOPOLL
NOBATCH

-n1
SQPOLL

1 1.16 1.16 1.16 1.16

2 2.32 2.31 1.33 2.30

3 2.23 3.26 1.35 2.54

4 2.18 4.10 1.37 2.52

5 2.09 4.35 1.38 2.42

6 2.03 4.63 1.39 2.49

7 2.02 4.86 1.38 2.51

8 2.02 4.85 1.38 2.39

44 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Eval: goals for Linux

An open-ended representation of NVMe devices for existing and new
NVMe Command-Sets with a fast-path for communication

Handles
 Bring up devices regardless of Linux device model match
Communication
Speak NVMe “natively”
Scale as efficiently as io_uring
Scale as efficiently as the SPDK NVMe Driver?

Peak IOPS in Millions

io_uring 4.16

io_uring_cmd 4.86

45 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison: IOPS via SPDK

 I/O generator
 bdevperf –q 128 –o 512 –w randread –t10 <bdev_conf> -m

<variations>

 Two variations
 -m[0]; using a single core and no thread-sibling
 -m[0,1]; using a single core and its thread-sibling
 Equivalent comparison of SMT effect as is done by t/io_uring

46 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison: IOPS via SPDK

Devices Millions of 512 byte IOPS
via the SPDK NVMe Driver

-m[0] -m[0,8]

1 1.15 1.15

2 2.31 2.30

3 3.34 3.31

4 4.35 4.34

5 5.22 5.22

6 6.11 6.10

7 7.11 7.10

8 7.24 8.08

Satures a single SMT thread

47 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison: IOPS via SPDK

Devices Millions of 512 byte IOPS
via the SPDK NVMe Driver

-m[0] -m[0,8]

1 1.15 1.15

2 2.31 2.30

3 3.34 3.31

4 4.35 4.34

5 5.22 5.22

6 6.11 6.10

7 7.11 7.10

8 7.24 8.08

Why the gap?

Generic facility
 Does more than specialized user-space driver
 Taps into generic kernel-infra
 io_uring_cmd specific I/O path reduction

Un-tapped optimizations
 Management of DMA Mapping

Peak IOPS in Millions

io_uring 4.16

io_uring_cmd 4.86

SPDK 8.08

48 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Eval: goals for Linux

An open-ended representation of NVMe devices for existing and new
NVMe Command-Sets with a fast-path for communication

Handles
 Bring up devices regardless of Linux device model match
Communication
Speak NVMe “natively”
Scale as efficiently as io_uring
Scale as efficiently as the SPDK NVMe Driver?

Peak IOPS in Millions

io_uring 4.16

io_uring_cmd 4.86

SPDK 8.08✗

49 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison: bdev implementations

Compare the following
 bdev_xnvme vs bdev_uring
 bdev_xnvme vs bdev_aio
 bdev_xnvme with io-mechanisms: libaio / io_uring / io_uring_cmd

Using bdevperf
 Compare single-device qd=1 for a sense of overhead
 Compare single-device qd=128 for a sense of scale

Provide the data to motivating next steps for bdev_xnvme

50 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison:

SPDK bdevs using libaio
bdev_xnvme vs bdev_aio
bdev_xnvme: {io_mechanism=libaio}

51 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

bdev_aio vs bdev_xnvme

1 Device 8 Devices

• bdev_xnvme at scale with bdev_aio

52 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison:

SPDK bdevs using io_uring
bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring}

53 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

bdev_uring vs bdev_xnvme

• bdev_xnvme at scale with bdev_uring

1 Device 8 Devices

54 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

bdev_uring vs bdev_xnvme

• bdev_xnvme at scale with bdev_uring
• bdev_xnvme “out-scales” bdev_uring with IOPOLL enabled

1 Device 8 Devices

55 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison:

SPDK bdev using io_uring_cmd
bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring_cmd}

Single device

56 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

bdev_uring vs bdev_xnvme

• bdev_xnvme (io_uring_cmd) > bdev_uring

1 Device1 Device

57 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

bdev_uring vs bdev_xnvme

• bdev_xnvme (io_uring_cmd) > bdev_uring
• bdev_xnvme (io_uring_cmd) > bdev_xnvme (io_uring)

1 Device1 Device

58 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Comparison:

SPDK bdev using io_uring_cmd
bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring_cmd}

Multiple device

59 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

bdev_uring vs bdev_xnvme

8 Devices 8 Devices

• bdev_xnvme (io_uring_cmd) > bdev_uring
• Both with and without IOPOLL

• bdev_xnvme (io_uring_cmd) > bdev_xnvme (io_uring)

60 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

What are next steps?

61 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Next Steps: io_uring_cmd

Handles / Encapsulation
 I/O access-control matching file-permissions on /dev/ng*n*
 Disable CAP_SYS_ADMIN for identify-commands (ns,ns-cs,ctrlr,ctrlr-cs,etc.)
 Enable non-root access to device information such as maximum-data-transfer-
size (MDTS), device properties

Communication
 Investigate potentials for large-block-sizes / hugepages
 Investigate DMA pre-mapping

62 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Next Steps: io_uring_cmd

Handles / Encapsulation
 I/O access-control matching file-permissions on /dev/ng*n*
 Disable CAP_SYS_ADMIN for identify-commands (ns,ns-cs,ctrlr,ctrlr-cs,etc.)
 Enable non-root access to device information such as maximum-data-transfer-
size (MDTS), device properties

Communication
 Investigate potentials for large-block-sizes / hugepages
 Investigate DMA pre-mapping

 DONE

63 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Next Steps: bdev_xnvme

Efficiency; match the IOPS rate achieved by the other bdevs
 Exploring opportunities to enable batching
 Performance “policy” e.g. “conserve_cpu” to disable optimizations
 Otherwise: auto-enable io_uring optimizations where applicable and

gracefully degrade in case of lacking system support
 Functionality
 NVM commands: Write Zeroes, Flush
 ZNS commands: (Zone Management Send/Receive)

Deployment on Windows (IOCP and IORING)
 Broaden SPDK deployment while matching interface efficiency

64 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Next Steps: bdev_xnvme

Efficiency; match the IOPS rate achieved by the other bdevs
 Exploring opportunities to enable batching
 Performance “policy” e.g. “conserve_cpu” to disable optimizations
 Otherwise: auto-enable io_uring optimizations where applicable and

gracefully degrade in case of lacking system support
 Functionality
 NVM commands: Write Zeroes, Flush
 ZNS commands: (Zone Management Send/Receive)

Deployment on Windows (IOCP and IORING)
 Broaden SPDK deployment while matching interface efficiency

exceed

65 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Next Steps: xNVMe

Currently supported
 IORING_SETUP_{IOPOLL|SQPOLL|SINGLE_ISSUER}
 Resource-registration (files)
 Batching: done on-behalf of the user via delayed submission

Currently missing
 IORING_SETUP_{COOP|DEFER}_TASKRUN
 Resource-registration (buffers, rings)

General optimizations: sqe-reuse, alignment, command-
construction

66 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

So, what does it mean for SPDK?

 The xNVMe bdev shows promise of encapsulating Linux kernel
NVMe interface for the bdev abstraction
 Single bdev to handle libaio, io_uring, and io_uring_cmd
 Single bdev to handle zone-management

A wider range of deployment of SPDK Applications
Closer collaboration and integration of storage eco-systems
What does it mean for the SPDK NVMe driver?

67 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Thanks!

 Collaboration
 Reproducing io_uring_cmd vs SPDK NVMe benchmarks
 Linux Kernel io_uring_cmd optimizations
 SPDK bdev_xnvme optimizations and functional expansion
 xNVMe optimization and functional expansion
 Link to previous presentation at SPDK Virtual Forum 2022

 https://youtu.be/aYALmcP6PDU?si=H-TC_CJWgERzrd8W

 Contact
 SPDK Slack Channels: https://spdk-team.slack.com/
 Samsung GOST / xNVMe @ Discord: https://discord.gg/XCbBX9DmKf

https://youtu.be/aYALmcP6PDU?si=H-TC_CJWgERzrd8W
https://spdk-team.slack.com/
https://discord.gg/XCbBX9DmKf

68 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	xNVMe and io_uring NVMe passthrough
	Agenda
	How (and why) did SPDK start?
	SPDK’s Motivation
	SPDK and NVMe
	Outline
	Why? 1/2
	Why: storage abstractions
	Why: storage abstractions “speaking NVMe”
	Why: storage abstractions “speaking NVMe”
	Why: device handles
	Why: device handles
	Why: device handles
	Why: device communication
	Why: device communication
	Why: device communication
	Why: device communication
	Existing solutions
	Why? 2/2
	Why: deployment environments
	Why: deployment environments
	Why: deployment environments
	Why: io_uring command for SPDK?
	Why: io_uring command for SPDK?
	Why: goals for Linux
	What? 1/3
	What: a solution to handles
	What: a solution to handles
	What: a solution to handles
	What? 2/3
	What: io_uring command
	What: io_uring command
	What: io_uring command
	What 3/3
	Slide Number 35
	Slide Number 36
	SPDK Integration: bdev_xnvme
	Comparison: peak IOPS for saturated CPU
	Comparison: system and software
	Comparison: system and software
	Comparison: system and software
	io_uring vs. io_uring_cmd
	io_uring vs. io_uring_cmd
	Eval: goals for Linux
	Comparison: IOPS via SPDK
	Comparison: IOPS via SPDK
	Comparison: IOPS via SPDK
	Eval: goals for Linux
	Comparison: bdev implementations
	Comparison:��SPDK bdevs using libaio
	bdev_aio vs bdev_xnvme
	Comparison:��SPDK bdevs using io_uring
	bdev_uring vs bdev_xnvme
	bdev_uring vs bdev_xnvme
	Comparison:��SPDK bdev using io_uring_cmd
	bdev_uring vs bdev_xnvme
	bdev_uring vs bdev_xnvme
	Comparison:��SPDK bdev using io_uring_cmd
	bdev_uring vs bdev_xnvme
	�What are next steps?
	Next Steps: io_uring_cmd
	Next Steps: io_uring_cmd
	Next Steps: bdev_xnvme
	Next Steps: bdev_xnvme
	Next Steps: xNVMe
	So, what does it mean for SPDK?
	Thanks!
	Please take a moment to rate this session.

