Overcoming SMBus Limitations with I3C

Presented by:
Janusz Jurski (Intel), Myron Loewen (Solidigm), Anthony Constantine (Intel), Juan Orozco (Intel)

Co-authors:
Bryan Kelly (Microsoft), Zbigniew Lukwinski (Intel)
Agenda

- SMBus Limitations
- I3C-based Solution
- Experimentation
- Summary & Call to Action
SMBus Limitations
SMBus/I2C Sideband Management Overview

- **SMBus/I2C** sideband interface used by all PCIe/CXL form factors, incl. storage
- No common I2C/SMBus addressing architecture
 - ARP expected by CEM Spec but often not implemented (ARP optional in SMBus spec)
 - System vendors maintain address databases to avoid collisions
 - Vendor-dependent proprietary solutions used instead, typically involving I2C/SMBus MUX
- Security expectations drive MUX-based architectures
 - Prevents peer-to-peer communications
- Legacy use cases
 - Simple communication driven by only BMC with quick responses by endpoints (FRU read, temp sensor, etc.)
 - Low bandwidth sufficient (typically 100kHz)
MCTP over SMBus w/MUX & Advanced Use Cases Don’t Work

- **MCTP over SMBus** expects continuous SMBus
 - expectation not valid in systems with MUX
 - SMBus arbitration does not work over MUX-based I2C/SMBus
- **Endpoints try to transmit when MUX switched away**
 - following the specifications, due to no ACK, they retry and drop packets after a couple of milliseconds
- **MCTP over SMBus with MUX generally unusable for:**
 - long-running tasks (SPDM, etc.)
 - asynchronous communication (alerts, events, notifications, etc.)
 - streaming from endpoint (telemetry, etc.)
 - large MCTP messages fragmented into many MCTP packets (frequent packet losses in these scenarios)
- **MUX switching during ongoing transmission**
 - truncated transactions interpreted/consumed with unpredictable consequences
 - many SMBus devices hang due to glitches
Packet Losses with Typical SMBus MUX Configuration

1. Sample successful request-response sequence when SMBus MUX not switched away

2. Failure when SMBus MUX switched away to another device

2a. Retry every 4.6us (no ACK when SMBus MUX switched away)
Workarounds Today

- Long running tasks or large MCTP messages:
 - BMC waiting idle for endpoint to process the request and respond
 - 100s of milliseconds wasted with every transaction
 - proprietary or higher-protocol control commands pause/resume device responses
 - NVMe-MI standardizes this approach to some extent (with NVMe-MI-specific assumptions)
 - retries (usually don’t work)
 - no way for the device to be aware of the MUX being switched away
 - retries repeat same sequence with same result
 - every vendor is different
- No workaround for truly asynchronous communication
I3C-based Solution
Industry Landscape with I3C

- **MIPI I3C Basic** – natural upgrade to address SMBus/I2C limitations
 - Upgrade details defined in EDSFF specification ([SNIA SFF-TA-1009 revision 3.1, published January 6th, 2023](https://www.snia.org/standards/edsff))[1]
 - Expecting other form factors to follow EDSFF solution
 - SNIA is donating EDSFF I3C solution to other standards organizations to keep specs aligned

- **MCTP I3C Binding** defined by DMTF

- Common I3C HUB specification (Intel RDC #766079) with standard pinout and registers (HW and SW drop-in compatible)
 - Renesas part numbers: RG3MxxB12B0
 - NXP part numbers: P3H2x4x

- Off-the-shelf components already available from multiple vendors
I3C Addresses SMBus Limitations

- Clear addressing architecture – all devices support dynamic address
- Comprehends MUX-based and MUX-less topologies:
 - BMC is initiator driving clock (redundancy supported)
 - Only BMC performs packet writes and reads
 - Endpoints do not initiate transactions
 - BMC optionally enables IBIs from endpoints (useful in MUX-less topology or with HUB)
- Improves security:
 - peer-to-peer communications must go thru I3C Controller (typically BMC)
- Other improvements:
 - supports in-band interrupts (IBIs)
 - supports in-band reset/recovery
 - 12.5Mbps in SDR mode, 25Mbps in DDR mode
MCTP I3C Binding (DSP0233)

- **Single I3C Controller**
 - only BMC initiates read/write transactions
 - works well even with traditional MUXes

- **Optional IBIs**
 - improve efficiency but no data loss if dropped

- **I3C CCCs to standardize behaviors, e.g.:**
 - discover capabilities (e.g., protocol)
 - MTU negotiation
 - IBI enable/disable

- **Binding improves robustness over pure MIPI I3C Basic**
 - added error detection and recovery mechanisms
I3C Discovery Flow as per EDSFF Specification

- Discover if any I3C-capable devices are attached
 - Using I3C reserved 0x7E address
- Discover if any SMBus-only devices are attached
 - using ARP or static address scan
- Stay in SMBus mode if at least one SMBus-only device present on targeted EDSFF port
 - I3C-capable devices still must be backwards compatible
 - MCTP over SMBus binding in use
- Switch to I3C if all devices on targeted EDSFF port support I3C
 - transition to lower voltage
 - MCTP over I3C binding in use
- Each downstream port can operate at either I3C or SMBus independently

Taken from SFF-TA-1009 Rev 3.1
I3C HUB Solves SMBus Issues & Enables Transition to I3C

- No arbitration or address issues for legacy SMBus
 - downstream port SMBus agent allows asynchronous and bi-directional communication with multiple SMBus endpoints
 - no endpoint devices changes needed to avoid SMBus limitations
 - SMBus agents enable concurrent and independent communication on each port
 - supports “SMBus busy signaling” for flow control to prevent packet losses with protocols such as MCTP
 - no bus switching during transmission as in existing SMBus/I2C Muxes

- Supports mix of SMBus and I3C devices
 - downstream ports independently operate in I3C transparent mode or SMBus agent mode
 - port in I3C mode allows for electrical isolation while maintaining same logical I3C network (protocol transparent)
 - supports voltage translation

- Reduces number of SMBus/I3C ports needed on BMCs
 - up to 8 downstream ports
 - two upstream ports (allowing upstream device redundancy)
Experimentation

Intel®, Solidigm®, Aspeed®, Renesas®, Introspect®, Microchip®, Microsoft®, Total Phase®, and Aardvark™ registered and unregistered trademarks, service marks, and logos are the property of their owners. Unauthorized use is strictly prohibited.
I3C Electricals in typical Storage back plane 2-wire (I3C/SMBus) Channel Topologies

Device Connectivity

Physical Topology

Motherboard
I3C Electricals in typical Storage back plane 2-wire (I3C/SMBus) Channel Topologies

I3C IO Voltage: 1.8V
I3C Open Drain Frequency: 100KHz
I3C Push-pull Frequency: 10MHz
Operating Conditions: Typical silicon, temp, voltage
System Architecture for PCIe/CXL

- **BMC with I3C Controller (Aspeed® AST2600)**
 - OpenBMC FW with MCTP over I3C binding support

- **HUB (Renesas® RG3M87B12)**
 - Enables SMBus to I3C transition as per EDSFF SFF-TA-1009 specification
 - Fixes MCTP over SMBus multi-initiator related challenges with multiplexers
 - Common HUB specification (drop-in compatible devices from multiple sources)

- **I3C-capable device (Microchip® PIC18F16Q20)**
 - Supports MCTP over I3C binding with sample commands

- **Legacy SMBus device (emulated with Total Phase® Aardvark™)**
 - Unaware of I3C
 - Unable to work efficiently with multiplexed SMBus (separate experimentation)

- **Introspect SV4E** logic analyzer

Diagram:
- Intel Reference Board
- BMC: Aspeed AST2600
- HUB: Renesas RG3M87B12
- Microchip PIC18F-Q20 Microcontroller
- Total Phase Aardvark
- Logic Analyzer (trace capture)
Experimentation – Flow with only I3C-capable Devices

1. DISEC in SMBus mode (I3C-capable device ACKs)

2. SMBus discovery
 2a. No SMBus device ACKed

3. DISEC in SMBus mode (triggers switch to I3C mode)

4. Voltage transition 3.3V to 1.8V (I3C transactions follow – next slides)
Experimentation – MCTP request and response in I3C mode with IBI

I3C-capable device responds in I3C mode

Request + IBI + Response

Request

IBI + Response
Experimentation – MCTP request and response in I3C mode with polling

I3C-capable device responds in I3C mode

Request + 2 x GETSTATUS + Response

GETSTATUS

Request

Response
Summary & Call to Action
Summary & Call to Action

- Experimentation confirmed off-the-shelf devices enable backward-compatible transition from SMBus to I3C and address key SMBus limitations
 - MCTP over I3C works well regardless of system architecture
 - MCTP over SMBus works well when MUX is replaced by I3C HUB – no endpoint device changes needed
- Adopt consistent (and backward-compatible) solution in other industry specifications
 - OCP: [Datacenter NVMe® SSD Specification](https://www.opencore.org), [Datacenter Secure Control Module (DC-SCM) 2.0](https://www.opencore.org), [OCP NIC 3.0](https://www.opencore.org), [OCP Firmware Recovery](https://www.opencore.org), [DC-MXIO/DC-MHS](https://www.opencore.org), [OCP OAI/UBB/OAM](https://www.opencore.org), …
- Make your product plans!
 - Intel’s reference platform HW ready now, OpenBMC FW aligned with PCIe 6.0
 - Solidigm ready to co-validate with additional partners in 2024
Please take a moment to rate this session.

Your feedback is important to us.