Benchmarking Storage with AI Workloads

Presented by
Devasena Inupakutika, Charles Lofton, Bridget Davis
Samsung Semiconductor Inc.
Motivation

- Growing production datasets: 10s, 100s of petabytes
- Samsung’s datacenter storage and memory products
- Research involving the impact of storage on AI/ML pipelines is limited
- How to showcase Samsung datacenter product’s impact to real world workloads?
Introduction

- Benchmarking essential to evaluating storage systems:
 - Storage needs for large machine learning datasets are growing
- Evaluating storage for AI workloads is challenging
 - Real-world AI training requires specialized hardware
 - System resources stressed by AI application
- Do AI workloads benefit from high performance storage systems?
- Is there a realistic method to showcase high performance storage for AI workloads?
- Can the test methods be easily implemented and reproducible?
Introduction

- Benchmark datasets are smaller whereas data is the moving force of AI algorithms
- Real-world production workloads demands huge data (both for training and generation during streaming)
- Empirical study to understand how AI workloads utilize storage devices through I/O patterns
AI Workloads I/O Characterization

- Better understanding of AI I/O profiles
- Provides insights on the design and configuration of storage systems
- Main aspects under consideration:
 - I/O Rates
 - Throughput Rates
 - Randomness
 - Locality of reference
 - I/O size distribution
 - % Reads vs Writes
Blocktrace Analysis of AI Workloads

- Gives deeper insight into I/O profile
- The block report generated by “btt” provides detail about each I/O:
 - Command (read or write), precise timestamp, starting LBA, ending LBA
 - From the above data we can derive details about:
 - Randomness: If starting address of I/O “B” equals ending address of I/O “A”, I/O is sequential
 - Read/write ratios
 - I/O size distribution: Ending LBA minus starting LBA equals block size in sectors
 - Locality of reference: Some address ranges are accessed more frequently than others
Rule of Thumb

- **AI workloads are computation bound**
 - Loading a 200KB image takes \(~200\text{us}\)
 - Classify a image takes \(~10\text{ms}\)

- **Parallelize AI jobs to saturate I/O**
 - Use a cluster of GPUs
 - Keep every GPU busy
I/O intensive Methodologies

Benchmarking AI workloads in a customer representative scenarios
Limiting Memory

- To accurately model realistic workload with very large training dataset requirement
 - Readily available benchmark datasets are small and fit in memory
 - Goal is to stress storage in a small realistic test environment
- Control Dataset size to memory ratio
 - e.g. MLPerf ImageNet dataset (150 GB)
 - Docker memory limit options

<table>
<thead>
<tr>
<th>Dataset Size (GB)</th>
<th>System Memory (GB)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>768</td>
<td>1:5</td>
</tr>
<tr>
<td>150</td>
<td>64</td>
<td>2.5:1</td>
</tr>
</tbody>
</table>
Simultaneous Data Ingestion and Training

- Normally, training is not run in isolation
- Multiple models to be trained
- Realistic scenario: data ingest and training happen together
Training in parallel

- **Training parallelism:**
 - Storage to meet the needs of concurrent data ingest of different training jobs

- **Hyper-parameter tuning:**
 - Run tens of hundreds of instances of the same training job with different configuration of the model
Inference: Streaming applications

- Inference is more likely I/O bound
 - Training has 3x computations compared to Inferencing
 - Forward propagation, backward propagation, and weight updates
 - Less CPU bound implies possibility of I/O bound
I/O Challenges for Streaming applications

- Large amount of concurrent input data volume
 - One 4K 30 fps video stream: 45Mbps (~6MBps)
 - 1000 video streams: 45Gbps (~6GBps)
 - Massive intermediate data from different stages in a pipeline

- Video processing pipeline
 - Videos are split into frames
 - Stages are isolated into containers
 - One stage consume frames from last stage
 - Frames are passed through Apache Kafka with replicas
Test System

Hardware Components	Details
GPU | 8x Nvidia Tesla V100S, 32 GB

CPU | Intel Xeon Platinum 8268, 2.9 GHz, 2 Sockets, 2 threads per core, 96 (24*2*2) total cores, 768 GB System Memory

Storage | Local: 1 Samsung PM9A3 (3.49 TiB) drive per host; PCI Express Gen4 x 4 interface U.2 (EXT4 file system)

Software Components	Details
Ubuntu | 20.04 focal

Tensorflow (tensorflow-gpu) | MLPerf- Version: 2.4.1

Docker | Version: 20.10.12

CUDA Toolkit | Version: CUDA-11.2

FIO | Version: 3.26-59

ResNet50 v1.5 model | Distributed multi-GPU training with ImageNet ILSVRC2012 dataset

OpenMPI | Version: 3.0.0

Horovod | Version: 0.24.2

For inference testbed:
- **Compute node cluster**
 - Kubernetes

- **Storage (message broker) cluster**
 - Kafka (Helm charts)
Dataset and Model details

<table>
<thead>
<tr>
<th>Task</th>
<th>Model</th>
<th>Framework</th>
<th>Dataset details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image classification training</td>
<td>ResNet50</td>
<td>Tensorflow-gpu: 2.4.1</td>
<td>ImageNet-1k</td>
</tr>
<tr>
<td>Video streaming and recognition: Inference through Image classification model</td>
<td>ResNet50</td>
<td>Tensorflow-gpu: 2.11.0</td>
<td>1. Videos:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a. Big Buck Bunny, Frame rate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24FPS, Resolution: 1920 x 1080, Size: 45 MB, Duration: 09:56 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b. Costa Rica, Frame rate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60FPS, Resolution: 3840 x 2160, Size: 1.13 GB, Duration: 05:13 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. ImageNet-1k Validation dataset</td>
</tr>
</tbody>
</table>
Impact of Limiting Memory
Baseline vs Limited memory: Disk profiles

- Disk throughput is substantially increased $\rightarrow 48x$
- Training time does not change much when limiting memory \rightarrow with faster/ performant storage

<table>
<thead>
<tr>
<th>Metric</th>
<th>Baseline</th>
<th>Limited Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. IOPS</td>
<td>23</td>
<td>2,244</td>
</tr>
<tr>
<td>Avg. Throughput (MiB/s)</td>
<td>5.84</td>
<td>280.46</td>
</tr>
<tr>
<td>Avg. Block Size (KiB)</td>
<td>169.55</td>
<td>170.23</td>
</tr>
<tr>
<td>Avg. Response time (μs)</td>
<td>203.63</td>
<td>185.91</td>
</tr>
<tr>
<td>Training time (minutes)</td>
<td>364</td>
<td>357</td>
</tr>
</tbody>
</table>

* Zero values are discarded from disk metric statistics calculation in the tables. Disk I/O, Throughput, Block sizes, Response time, CPU and GPU utilization % are average values.
System resources

- Baseline and Limiting memory exhibit comparable performance
I/O Profile: Resnet50 Single-Model Training

<table>
<thead>
<tr>
<th>I/O</th>
<th>Read Pct.</th>
<th>Random Pct.</th>
<th>Average IOPS</th>
<th>Minimum Read Request (KiB)</th>
<th>Median Read Request (KiB)</th>
<th>Maximum Read Request (KiB)</th>
<th>Mean Read Request (KiB)</th>
<th>Standard Deviation (KiB)</th>
<th>Minimum Write Request (KiB)</th>
<th>Median Write Request (KiB)</th>
<th>Maximum Write Request (KiB)</th>
<th>Mean Write Request (KiB)</th>
<th>Standard Deviation (KiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>99.94%</td>
<td>83.88%</td>
<td>639</td>
<td>4</td>
<td>128</td>
<td>256</td>
<td>171</td>
<td>60</td>
<td>4</td>
<td>8</td>
<td>108</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Random</td>
<td>99.96%</td>
<td>100%</td>
<td>536</td>
<td>4</td>
<td>128</td>
<td>256</td>
<td>177</td>
<td>62</td>
<td>4</td>
<td>8</td>
<td>108</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Sequential</td>
<td>99.85%</td>
<td>0%</td>
<td>103</td>
<td>4</td>
<td>128</td>
<td>256</td>
<td>135</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td>44</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>

- Nearly 100% read, 84% random, with I/O sizes ranging from 4K to 256K
Trace statistics: I/O plots and locality histogram

- Random and Sequential reads within a relatively narrow address range
- High locality of reference
Trace statistics: I/O Request Sizes

- Random reads ranged from 4K to 256K, but more than 99% were either 128K or 256K (left).
- Random write I/O sizes were more diverse (right). Sequential I/O size distribution was similar.
Simultaneous Data Ingestion and Training
Baseline vs Limited memory: Disk profiles

<table>
<thead>
<tr>
<th>Metric</th>
<th>Baseline</th>
<th>Limited Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. IOPS</td>
<td>25054</td>
<td>25035</td>
</tr>
<tr>
<td>Avg. Throughput (MiB/s)</td>
<td>3162.59</td>
<td>3181.91</td>
</tr>
<tr>
<td>Avg. Block Size (KiB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read:</td>
<td>169.8</td>
<td>Read: 170.4</td>
</tr>
<tr>
<td>Write:</td>
<td>128</td>
<td>Write: 128</td>
</tr>
<tr>
<td>Avg. Response time (ms)</td>
<td>79.418</td>
<td>75.48</td>
</tr>
<tr>
<td>Training time (minutes)</td>
<td>373.15</td>
<td>373</td>
</tr>
</tbody>
</table>

* Zero values are discarded from disk metric statistics calculation in the tables. Disk I/O, Throughput, Block sizes, Response time, CPU and GPU utilization % are average values.
System resources

- GPU utilization unaffected:
 - GPU not handling data ingestion operations
- CPU-IOWait increases:
 - Parallel data ingestion
I/O Characterization

<table>
<thead>
<tr>
<th>I/O</th>
<th>Read Percent</th>
<th>Random Percent</th>
<th>Average IOPS</th>
<th>Minimum Read (KiB)</th>
<th>Median Read (KiB)*</th>
<th>Mean Read (KiB)</th>
<th>Read Std. Dev. (KiB)</th>
<th>Minimum Write (KiB)</th>
<th>Median Write (KiB)</th>
<th>Maximum Write (KiB)</th>
<th>Mean Write (KiB)</th>
<th>Write Std. Dev. (KiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.33%</td>
<td>95.47%</td>
<td>24,714</td>
<td>4</td>
<td>256</td>
<td>247</td>
<td>46</td>
<td>4</td>
<td>128</td>
<td>508</td>
<td>128</td>
<td>6</td>
</tr>
<tr>
<td>Limited Memory</td>
<td>1.78%</td>
<td>93.86%</td>
<td>24,786</td>
<td>4</td>
<td>256</td>
<td>245</td>
<td>52</td>
<td>4</td>
<td>128</td>
<td>508</td>
<td>128</td>
<td>7</td>
</tr>
</tbody>
</table>

* Also Maximum Read

Baseline
- I/O profile is mostly write and mostly random
- Primary difference between baseline and limited memory is in the read profile
- In baseline training run, disk reads occur primarily in the first epoch because the entire data set fits in memory
- In limited memory run, reads from disk occur during all training epochs

Limited Memory

![Read Scatterplot](Baseline.png)

![Read Scatterplot](Limited Memory.png)
Trace statistics: Write I/O plots and locality

- Writes are ~95% random, but locality of reference is high
Training in Parallel
Parallel models training: Disk profiles

<table>
<thead>
<tr>
<th>Containers/Parallel Models</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPUs per training workload</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Batch Size</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>512</td>
</tr>
<tr>
<td>Disk I/O</td>
<td>1658.3</td>
<td>1679.94</td>
<td>2805.26</td>
<td>1245.34</td>
</tr>
<tr>
<td>Disk Throughput (MiB/s)</td>
<td>276.55</td>
<td>419.56</td>
<td>351.32</td>
<td>310.72</td>
</tr>
<tr>
<td>Block (KiB)</td>
<td>169.55</td>
<td>253.71</td>
<td>127.31</td>
<td>254.2</td>
</tr>
<tr>
<td>Response time (μs)</td>
<td>203.63</td>
<td>304.57</td>
<td>162.71</td>
<td>195.88</td>
</tr>
<tr>
<td>Training time (minutes)</td>
<td>364</td>
<td>258.2</td>
<td>441</td>
<td>682</td>
</tr>
</tbody>
</table>

* Zero values are discarded from disk metric statistics calculation in the tables. Disk I/O, Throughput, Block sizes, Response time, CPU and GPU utilization % are average values.
System resources

- CPU and GPU utilization increases with number of read-intensive training workloads
I/O Characterization

<table>
<thead>
<tr>
<th></th>
<th>1 Model</th>
<th>2 Models</th>
<th>4 Models</th>
<th>8 Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Reads</td>
<td>794,262</td>
<td>509,876</td>
<td>1,084,946</td>
<td>509,674</td>
</tr>
<tr>
<td>Mean Read Request</td>
<td>170 KiB</td>
<td>256 KiB</td>
<td>128 KiB</td>
<td>256 KiB</td>
</tr>
<tr>
<td>Median Read Request</td>
<td>128 KiB</td>
<td>256 KiB</td>
<td>128 KiB</td>
<td>256 KiB</td>
</tr>
<tr>
<td>Randomness</td>
<td>83.9%</td>
<td>95.4%</td>
<td>74.8%</td>
<td>92.6%</td>
</tr>
<tr>
<td>Locality Bands</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Percent of I/O received by 10% address space</td>
<td>99%</td>
<td>63%</td>
<td>98%</td>
<td>62%</td>
</tr>
</tbody>
</table>

- 2-models and 8-models parallel training similarities
- Average request size increased from 256 blocks to 512 blocks (256 KiB)
- 8-models training is 100% read, with randomness increasing from 75% (4-models) to 92%
Two- and eight-models show several bands of activity distributed across drive’s address range.
Trace statistics: Locality

- Highest locality of reference in single model training: 6% address space receiving > 99% reads
- Two- and eight-models have reads more distributed across the drive’s address range
Trace statistics: I/O Request Sizes

- **Single model**: Random read request sizes ranged from 4KiB to 256KiB
 - Mainly either 4KiB or 256KiB
- **Four models**: Most reads are 128 KiB

Eight models
Inference: Streaming workload
Data Ingestion Disk Metrics

<table>
<thead>
<tr>
<th>Metric/Concurrent Streams</th>
<th>300, 24 FPS Videos, 3 RF (6 partitions) - 1 topics</th>
<th>300, 24 FPS Videos, 3 RF (6 partitions) - 3 topics</th>
<th>300, 60 FPS Videos, 3 RF (6 partitions) - 1 topic</th>
<th>300, 60 FPS Videos, 3 RF (6 partitions) - 3 topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. IOPS</td>
<td>4471.79</td>
<td>7327.74</td>
<td>27637.63</td>
<td>13234</td>
</tr>
<tr>
<td>Avg. Throughput (MiB/s)</td>
<td>46.77</td>
<td>152.69</td>
<td>407.75</td>
<td>306.63</td>
</tr>
<tr>
<td>Avg. Block Size (KiB)</td>
<td>Read: 110.87 Write: 11.69</td>
<td>Read: 44 Write: 18</td>
<td>Read: 157.7 Write: 13.2</td>
<td>Read: 125 Write: 21.18</td>
</tr>
<tr>
<td>Avg. Response time (μs)</td>
<td>838.37</td>
<td>1489.38</td>
<td>975.29</td>
<td>1223.09</td>
</tr>
</tbody>
</table>

- Frame extraction from 300 concurrent streams and publish to topic: ~27K IOPS
- Disk I/O and Throughput increase with great parallelism
CPU overhead increased with increasing partitions from 3 to 6 but remained constant with further increase to 12 partitions.

Videos with higher frame rate (FPS) and resolution showed relatively higher CPU utilization.
Data Ingestion I/O Characterization

<table>
<thead>
<tr>
<th>I/O</th>
<th>Read Percent</th>
<th>Random Percent</th>
<th>Average IOPS</th>
<th>Minimum Write (KiB)</th>
<th>Median Write (KiB)</th>
<th>Maximum Write (KiB)</th>
<th>Mean Write (KiB)</th>
<th>Std. Dev. (KiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Streams</td>
<td>0.08%</td>
<td>71.43%</td>
<td>281</td>
<td>4</td>
<td>4</td>
<td>764</td>
<td>32</td>
<td>96</td>
</tr>
<tr>
<td>100 Streams</td>
<td>0.54%</td>
<td>69.92%</td>
<td>422</td>
<td>4</td>
<td>8</td>
<td>764</td>
<td>64</td>
<td>140</td>
</tr>
</tbody>
</table>

- Nearly 100% write, ~70% random

- Writes more widely distributed across SSD’s address range with increased streams

Standard deviation suggests high diversity of write sizes
Trace statistics: Locality of reference and I/O sizes distribution

- Write locality high both for 30 and 100 streams with 6% address space receiving 87% and 93% writes respectively.

- Random write request size distribution was quite varied
- 70% of random writes were 28K or less, but the remaining 30% ranged up to 764K
System Implications and Discussion

- The majority of the workloads studied were primarily random, with relatively high locality of reference
 - Suitable for testing optimizations such as read caching and write coalesce
- Some workloads (e.g. inference streaming) exhibited a very diverse write I/O size distribution
 - Useful “real-world” benchmarking tool for challenging high performance storage systems
Conclusion

▪ Simultaneous data ingestion and training, and inference were particularly effective benchmarks
 ▪ These approaches present challenging, “real-world” workloads to storage

▪ Our testing indicates that high-performance storage allows I/O-intensive and computationally-intensive portions of the AI pipeline to run in parallel with minimal impact on training and inference times.
Thank You!
Backup Slides
Summary statistics

Workload Description	Read Percentage	Random Percentage	Average IOPS	Minimum Read Request (KiB)	Median Read Request (KiB)	Maximum Read Request (KiB)	Mean Read Request (KiB)	Standard Deviation (KiB)	Minimum Write Request (KiB)	Median Write Request (KiB)	Maximum Write Request (KiB)	Mean Write Request (KiB)	Standard Deviation (KiB)	Random Read Operations	Random Write Operations	Sequential Read Operations	Sequential Write Operations	Trace Length Seconds		
ResNet50 Training Single Model	99.94%	83.88%	639	4	128	256	171	60	8	108	16	16	666,340	265	127,922	194	1,244			
ResNet50 Training Two Models	100.00%	95.43%	600	4	256	256	256	6	4	4	4	138	6	46,231,316	1,312	1,824,854	744	20,822		
ResNet50 Training Two Models LM	100.00%	96.20%	2,308	4	256	256	256	172	113	4	4	4	4	138	6	46,231,316	1,312	1,824,854	744	20,822
ResNet50 Training Four Models	99.95%	74.79%	890	4	128	128	128	2	4	4	4	128	11	20	811,309	471	273,637	52	1,220	
ResNet50 Training Eight Models	100.00%	92.59%	257	4	256	256	256	7	0	0	0	0	0	741,924	0	37,746	0	1,983		

Inference Baseline, Video Streaming, Ingestion Phase (30 Streams, 3 Partitions)
- 0.08% | 71.43% | 281 | 4 | 128 | 128 | 102 | 50 | 4 | 4 | 764 | 32 | 96 | 773 | 720,927 | 40 | 288,605 | 3,599 |

Inference Baseline, Video Streaming, Ingestion Phase (100 Streams, 3 Partitions)
- 0.54% | 69.92% | 422 | 4 | 128 | 128 | 118 | 32 | 4 | 8 | 764 | 64 | 140 | 8,016 | 1,054,351 | 260 | 456,703 | 3,599 |

Simultaneous Data Ingestion and Training (5 Epochs)
- 0.33% | 95.47% | 24,714 | 4 | 256 | 256 | 247 | 46 | 4 | 128 | 508 | 128 | 6 | 574,458 | 175,355,092 | 33,960 | 8,305,481 | 7,456 |

Simultaneous Data Ingestion and Training (5 Epochs Limited Memory)
- 1.78% | 93.86% | 24,786 | 4 | 256 | 256 | 245 | 52 | 4 | 128 | 508 | 128 | 6 | 2,879,201 | 157,200,319 | 154,185 | 10,321,862 | 6,881 |

Training with Checkpointing Every 100 Steps
- 93.27% | 92.61% | 165 | 4 | 256 | 256 | 255 | 14 | 4 | 16 | 1,280 | 431 | 567 | 507,355 | 12,527 | 16,214 | 25,255 | 3,408 |

Training with Checkpointing Every 1252 Steps (Default Interval)
- 99.68% | 96.78% | 151 | 4 | 256 | 256 | 256 | 7 | 4 | 16 | 1,280 | 134 | 362 | 501,256 | 297 | 15,348 | 1,351 | 3,484 |

BERT 2000-Step Default Checkpoint Interval PM983
- 0.22% | 4.38% | 26 | 4 | 128 | 128 | 126 | 15 | 4 | 128 | 128 | 128 | 5 | 69 | 2,740 | 74 | 61,185 | 2,511 |

BERT 2000-Step Default Checkpoint Interval PM9A3
- 0.11% | 60.38% | 43 | 4 | 128 | 256 | 166 | 66 | 4 | 8 | 1,280 | 36 | 176 | 215 | 164,878 | 92 | 108,218 | 6,395 |

BERT 2000-Step Default Checkpoint Interval PM9A3 + Preconditioning + New FS
- 0.23% | 0.49% | 2 | 4 | 128 | 256 | 129 | 89 | 4 | 1,280 | 1,280 | 1,127 | 326 | 9 | 16 | 5,113 | 2,163 |

BERT 2000-Step Default Checkpoint Interval PM9A3 + New FS + Pytorch Framework
- 0.00% | 3.47% | 181 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 508 | 1,280 | 579 | 443 | 7,382 | 0 | 205,078 | 1,176 |

BERT 2000-Step Limited Memory Default Checkpoint Interval PM983
- 0.27% | 3.63% | 26 | 4 | 128 | 128 | 126 | 5 | 4 | 128 | 128 | 128 | 5 | 107 | 2,149 | 60 | 59,818 | 2,380 |

BERT 2000-Step Limited Memory Default Checkpoint Interval PM9A3
- 0.12% | 58.17% | 45 | 4 | 128 | 256 | 169 | 63 | 4 | 8 | 1,280 | 36 | 174 | 219 | 158,072 | 106 | 113,707 | 6,110 |

BERT 2000-Step With 250-Step Checkpoint Interval PM983
- 0.10% | 3.70% | 106 | 4 | 128 | 128 | 123 | 25 | 4 | 128 | 128 | 128 | 5 | 133 | 965,119 | 254,328 | 2,504 |

BERT 2000-Step With 250-Step Checkpoint Interval PM9A3
- 0.08% | 57.94% | 131 | 4 | 128 | 256 | 172 | 64 | 4 | 8 | 1,280 | 89 | 285 | 196 | 202,814 | 99 | 147,279 | 2,680 |

BERT 2000-Step With Simultaneous Data Ingestion PM983
- 0.05% | 97.63% | 4,470 | 4 | 128 | 128 | 7 | 20 | 4 | 128 | 128 | 127 | 8 | 17,135 | 33,601,880 | 1,471 | 814,030 | 7,704 |

BERT 2000-Step With Simultaneous Data Ingestion PM9A3
- 0.04% | 99.32% | 24,311 | 4 | 4 | 256 | 10 | 31 | 4 | 128 | 1,280 | 127 | 12 | 6,949 | 62,821,436 | 16,860 | 411,639 | 2,402 |
Please take a moment to rate this session.

Your feedback is important to us.