Riding the Long Tail of Optane’s Comet

Emerging Memories, CXL, UCIe, and More

Jim Handy, Objective Analysis
Agenda

- Optane’s brief history
- Today’s Alternatives
- Optane’s Legacy
- CXL
- UClE
- Future Thoughts
An Optane Timeline

- 2015: 3D XPoint Announced
- 2016: First Optane SSD Shipped
- 2017: "Optane Memory" Launch
- 2018: First Optane DIMM Shipped, First Processor Support of Optane DIMM
- 2019: "Optane Memory" Discontinued, Optane Consumer SSDs Discontinued
- 2020: Optane To "Wind Down"
- 2021: Micron Ends Intel Relationship
- 2022: Micron Kills 3D XPoint Effort, Micron Sells Lehi Fab

QuantX Announced, First QuantX SSD Demonstrated
Today’s Alternatives
Alternatives to Optane

<table>
<thead>
<tr>
<th></th>
<th>Persistent?</th>
<th>Speed</th>
<th>Cost/DRAM</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optane</td>
<td>Yes</td>
<td>30%</td>
<td>50%</td>
<td>Winding Down</td>
</tr>
<tr>
<td>NVDIMM-N</td>
<td>Yes</td>
<td>100%</td>
<td>200%</td>
<td>Battery/Capacitor</td>
</tr>
<tr>
<td>MRAM DIMM</td>
<td>Yes</td>
<td>100%</td>
<td>1,000%</td>
<td>Compatibility</td>
</tr>
<tr>
<td>Fast SSD</td>
<td>Yes</td>
<td>0.1%</td>
<td>20%</td>
<td>Slow</td>
</tr>
<tr>
<td>Added DRAM</td>
<td>No</td>
<td>100%</td>
<td>100%+</td>
<td>Bus loading</td>
</tr>
</tbody>
</table>
Optane’s Still Around

- Current inventory fulfilling needs
- Ongoing low-level demand
- Support already in place
NVDIMM-N

- Faster than Optane
- >2X the cost of DRAM
- Requires back-up power source
MRAM DIMM

- Production started in 2017
- DDR3 only
- Requires changes to processor
- >100X the cost of DRAM
MRAM Is Already in the Enterprise

- IBM FlashCore Modules use MRAM instead of DRAM
 - Store translation tables
 - Buffers for write coalescing etc.
 - Easy way to protect data in flight
 - Fast path to persistence

- Consumer adoption is growing
 - Wearables, vehicles, health monitors, etc.
 - Drives growing wafer volume
 - Economies of scale will reduce prices
Fast SSD

- **SSD? Really??**
- Kioxia and Samsung both advocate this
 - Special NAND chip architectures
 - Uses SLC NAND
 - ~6X the price of TLC NAND
- Which performs better:
 - Fast & Small (DRAM) or
 - Slow & Big (NAND)?
Conundrum: Fast & Small, or Slow & Big?

- Share of Accesses
- Address Range
It’s Getting Harder To Add More DRAM

- “Fast & Small” includes large DRAM approaches
 - But large DRAMs increase loading, slowing the memory channel
 - Adding memory channels increases processor power & pin count
 - This is a thorny problem!

- IBM has been wrestling with this for years
 - POWER architecture uses buffered DIMMs with non-DDR interface
 - OpenCAPI led to the OMI interface
 - CXL is adding slower memory to the CXL channel
 - Disaggregated memory
 - Memory tiering
 - Will discuss this shortly
The Short Story: There Are Many Options

<table>
<thead>
<tr>
<th>Persistent?</th>
<th>Speed</th>
<th>Cost/DRAM</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optane</td>
<td>Yes</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td>NVDIMM-N</td>
<td>Yes</td>
<td>100%</td>
<td>200%</td>
</tr>
<tr>
<td>MRAM DIMM</td>
<td>Yes</td>
<td>100%</td>
<td>1,000%</td>
</tr>
<tr>
<td>Fast SSD</td>
<td>Yes</td>
<td>0.1%</td>
<td>20%</td>
</tr>
<tr>
<td>Added DRAM</td>
<td>No</td>
<td>100%</td>
<td>100%+</td>
</tr>
</tbody>
</table>
Optane’s Legacy
Optane’s Legacy: New Programming Models

SNIA NVM Programming Model is just the start

- Hierarchical memory tiers (HBM, DDR, CXL)
- Memory disaggregation is coming
 - Reduces “Stranded Memory”
- Models may move into the chiplet
 - Persistent cache (with an emerging memory)
OLD WAY
- All DRAM, all one speed
- Persistence is a storage thing
 - Slowed by context switches
- Memory is only put on the memory channel
- Only memory is put on the memory channel

NEW WAY
- Mixed memories, mixed speeds
- Persistence OK in memory
 - No context switches
- 4 channels: HBM, DDR, CXL, & UCIe
- Memory-Semantic SSDs on CXL
New Thoughts on Context Switches

Latency Budgets

- **Context Switch**
 - Polling used when a context switch would be too slow

![Latency Bar Chart]

- HDD
- SATA SSD
- NVMe
- Persistent Memory

Latency (ns)

CXL
DDR-T: Intel’s Original Approach to Slower Memory

DDR-T for Optane
- Handles both fast & slow memory
 - Transactional protocol supports slow writes
- Based on standard DDR4 interface
 - “Modified Control Signals” added to unassigned pins
 - All timing, signaling, protocol otherwise unmodified
- DRAM and Optane share the same sockets
 - Optane and DRAM modules look nearly identical to the end user
- Migration from DDR4 to DDR5 a colossal headache!
CXL Solves Multiple Problems

- Removes processor’s DDR limitation
 - A processor could use DDR4 or DDR5, but not both
 - CXL allows far memory to use any interface
 - With OMI near memory becomes similarly independent

- Supports memory disaggregation
 - No “Stranded Memory”
 - Memory pools can be dynamically allocated
 - Data sets can be moved from processor to processor

- Paves the way for UCle
Any Memory Talks to Any Server

- DDR4 Server
- DDR5 Server
- DDR4 DRAM
- DDR5 DRAM
- MRAM
- ReRAM
- FRAM
- Flash
CXL 3.0 Supports Memory Fabrics

- Near Memory at CPU
- Far Memory on CXL
- CXL to support multiple Far Memory configurations
 - Large Memory
 - Memory Pools
 - Memory Sharing
 - Used for trading messages
 - Memory Fabrics
- No memory interface dependencies
UCle is CXL for Chiplets
A Standardized Chiplet Interface

Supports multiple sources, and multiple customers
UCIe and Memories

- Mixed processes optimize cost/performance
 - Logic in a CMOS logic process
 - In logic SRAM & NOR flash are the only options for on-die memory
 - Memory chiplet in a memory process
 - DRAM, MRAM, ReRAM, FRAM, PCM...
 - Significant die area & cost reductions

- Commoditizes chiplets
 - One memory chiplet can be used by multiple logic companies
 - Increases volume, lowers costs
 - All vendors’ parts equivalent
 - Vendors compete on price
SRAM Is No Longer Suited to CMOS Logic

- SRAM doesn’t scale with logic process
 - Cost increases with smaller geometries
- Emerging memories can solve this problem
- Future caches will use emerging memories
 - Larger capacities
 - Cheaper
 - Persistent

From: Emerging Memories Branch Out
Chiplet Memory Can Be Persistent

- Persistent code and data memory, and even caches
- Software will need to catch up
 - The SNIA NVM Programming Model is the basis for this
- Security concerns
 - What if the persistent cache chip falls into the wrong hands?
 - Should cache lines be erased when invalidated?
 - Should all memory communications and NVM data at rest be encrypted?
Future Thoughts
Emerging Memory is Falling Into Place

- Leading-edge processes can’t use NOR
 - And SRAM is growing unattractive!
- Already some use in the enterprise
- Growing adoption in consumer applications
- Increased consumption will reduce prices
 - The economies of scale will accelerate emerging memory penetration
- Plus, they offer technical benefits
 - Fast
 - Very low power
 - Less messy than flash
Emerging Memories Are Around the Corner

MRAM

ReRAM

PCM

FRAM
All New Memories Share Some Attributes

- Small single-element cell
 - Supports small/inexpensive die and 3D stacking
 - Promises to scale past DRAM & NAND flash
- Write in place
 - No “Block Erase”
 - More symmetrical read/write speeds
- Nonvolatile/Persistent
 - These can all be used as Persistent Memory: “PM”
The Future of Emerging Memories

Emerging memory revenue forecast to grow significantly faster than DRAM or NAND flash

From: Emerging Memories Branch Out
Summary

- Optane’s short life founded a great legacy
 - New computing architectures and programming models
 - Many alternatives for the Optane user
- CXL has opened the door to new memory architectures
 - Processors no longer tied down to one interface, one memory type
- UCIe makes CXL’s strengths available to chiplets
 - Chiplets are the path to future processors
- Emerging memories are poised to solve tomorrow’s problems
Please take a moment to rate this session.

Your feedback is important to us.