STORAGE DEVELOPER CONFERENCE

BY Developers FOR Developers

Riding the Long Tail of Optane's Comet

Emerging Memories, CXL, UCIe, and More

Jim Handy, Objective Analysis

Agenda

- Optane's brief history
- Today's Alternatives
- Optane's Legacy
- CXL
- UCle
- Future Thoughts

An Optane Timeline

Today's Alternatives

4 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Alternatives to Optane

	Persistent?	Speed	Cost/DRAM	lssues
Optane	Yes	30%	50%	Winding Down
NVDIMM-N	Yes	100%	200%	Battery/Capacitor
MRAM DIMM	Yes	100%	1,000%	Compatibility
Fast SSD	Yes	0.1%	20%	Slow
Added DRAM	No	100%	100%+	Bus loading

Optane's Still Around

Current inventory fulfilling needs
Ongoing low-level demand
Support already in place

NVDIMM-N

Faster than Optane
>2X the cost of DRAM
Requires back-up power source

MRAM DIMM

- Production started in 2017
- DDR3 only
- Requires changes to processor
- >100X the cost of DRAM

MRAM Is Already in the Enterprise

IBM FlashCore Modules use MRAM instead of DRAM

- Store translation tables
- Buffers for write coalescing etc.
- Easy way to protect data in flight
- Fast path to persistence

Consumer adoption is growing

- Wearables, vehicles, health monitors, etc.
- Drives growing wafer volume
- Economies of scale will reduce prices

Fast SSD

SSD? <u>Really</u>???

Kioxia and Samsung both advocate this

- Special NAND chip architectures
- Uses SLC NAND
 - ~6X the price of TLC NAND

Which performs better:

- Fast & Small (DRAM) or
- Slow & Big (NAND)?

Conundrum: Fast & Small, or Slow & Big?

Address Range

It's Getting Harder To Add More DRAM

"Fast & Small" includes large DRAM approaches

- But large DRAMs increase loading, slowing the memory channel
- Adding memory channels increases processor power & pin count
- This is a thorny problem!

IBM has been wrestling with this for years

- POWER architecture uses buffered DIMMs with non-DDR interface
 - OpenCAPI led to the OMI interface
- CXL is adding slower memory to the CXL channel
 - Disaggregated memory
 - Memory tiering
 - Will discuss this shortly

The Short Story: There Are Many Options

	Persistent?	Speed	Cost/DRAM	lssues
Optane	Yes	30%	50%	Winding Down
NVDIMM-N	Yes	100%	200%	Battery/Capacitor
MRAM DIMM	Yes	100%	1,000%	Compatibility
Fast SSD	Yes	0.1%	20%	Slow
Added DRAM	No	100%	100%+	Bus loading

Optane's Legacy

14 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Optane's Legacy: New Programming Models

SNIA NVM Programming Model is just the start

- Hierarchical memory tiers (HBM, DDR, CXL)
- Memory disaggregation is coming
 - Reduces "Stranded Memory"
- Models may move into the chiplet
 - Persistent cache (with an emerging memory)

Optane's Legacy: A Fresh Look at Memory

OLD WAY

- All DRAM, all one speed
- Persistence is a storage thing
 - Slowed by context switches
- Memory is <u>only</u> put on the memory channel
- Only <u>memory</u> is put on the memory channel

NEW WAY

- Mixed memories, mixed speeds
- Persistence OK in memory
 - No context switches
- 4 channels: HBM, DDR, CXL, & UCle
- Memory-Semantic SSDs on CXL

New Thoughts on Context Switches

CXL

18 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

DDR-T: Intel's Original Approach to Slower Memory

DDR-T for Optane

- Handles both fast & slow memory
 - Transactional protocol supports slow writes
- Based on standard DDR4 interface
 - "Modified Control Signals" added to unassigned pins
 - All timing, signaling, protocol otherwise unmodified
- DRAM and Optane share the same sockets
 - Optane and DRAM modules look nearly identical to the end user
- Migration from DDR4 to DDR5 a colossal headache!

CXL Solves Multiple Problems

Removes processor's DDR limitation

- A processor could use DDR4 or DDR5, but not both
- CXL allows far memory to use any interface
 - With OMI near memory becomes similarly independent

Supports memory disaggregation

- No "Stranded Memory"
- Memory pools can be dynamically allocated
- Data sets can be moved from processor to processor
- Paves the way for UCIe

Any Memory Talks to Any Server

23

CXL 3.0 Supports Memory Fabrics

- Near Memory at CPU
- Far Memory on CXL
- CXL to support multiple Far Memory configurations
 - Large Memory
 - Memory Pools
 - Memory Sharing
 - Used for trading messages
 - Memory Fabrics
- No memory interface dependencies

UCle

23 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

UCIe is CXL for Chiplets

A Standardized Chiplet Interface

Supports multiple sources, and multiple customers

UCIe and Memories

Mixed processes optimize cost/performance

- Logic in a CMOS logic process
 - In logic SRAM & NOR flash are the only options for on-die memory
- Memory chiplet in a memory process
 - DRAM, MRAM, ReRAM, FRAM, PCM...
- Significant die area & cost reductions

Commoditizes chiplets

- One memory chiplet can be used by multiple logic companies
 - Increases volume, lowers costs
- All vendors' parts equivalent
 - Vendors compete on price

SRAM Is No Longer Suited to CMOS Logic

From: Emerging Memories Branch Out

SRAM doesn't scale with logic process

- Cost increases with smaller geometries
- Emerging memories can solve this problem
- Future caches will use emerging memories
 - Larger capacities
 - Cheaper
 - Persistent

Chiplet Memory Can Be Persistent

- Persistent code and data memory, and even caches
- Software will need to catch up
 - The SNIA NVM Programming Model is the basis for this
- Security concerns
 - What if the persistent cache chip falls into the wrong hands?
 - Should cache lines be erased when invalidated?
 - Should all memory communications and NVM data at rest be encrypted?

Future Thoughts

29 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Emerging Memory is Falling Into Place

Leading-edge processes can't use NOR

And SRAM is growing unattractive!

- Already some use in the enterprise
- Growing adoption in consumer applications
- Increased consumption will reduce prices
 - The economies of scale will accelerate emerging memory penetration
- Plus, they offer technical benefits
 - Fast
 - Very low power
 - Less messy than flash

Emerging Memories Are Around the Corner PCM

MRAM

FRAM

All New Memories Share Some Attributes

Small single-element cell

- Supports small/inexpensive die and 3D stacking
- Promises to scale past DRAM & NAND flash
- Write in place
 - No "Block Erase"
 - More symmetrical read/write speeds

Nonvolatile/Persistent

These can all be used as Persistent Memory: "PM"

The Future of Emerging Memories

Emerging memory revenue forecast to grow significantly faster than DRAM or NAND flash

From: Emerging Memories Branch Out

33 | ©2023 SNIA. All Rights Reserved.

New Report: Emerging Memories Branch Out

34 | ©2023 SNIA. All Rights Reserved

https://Objective-Analysis.com/reports/#Emerging http://www.TomCoughlin.com/techpapers.htm

Summary

Optane's short life founded a great legacy

- New computing architectures and programming models
- Many alternatives for the Optane user
- CXL has opened the door to new memory architectures
 - Processors no longer tied down to one interface, one memory type
- UCIe makes CXL's strengths available to chiplets
 - Chiplets are the path to future processors
- Emerging memories are poised to solve tomorrow's problems

Please take a moment to rate this session.

Your feedback is important to us.

36 | ©2023 SNIA. All Rights Reserved.