Deep Dive and Comparison of RAID Solutions for PCIe Gen5

Performance Analysis and Datapath Breakdown

Presented by Davide Villa and Sergei Platonov, XINNOR
Agenda

- Who we are
- PCIe Gen5: great performance… if properly handled
- RAID benchmark with PCIe Gen5 SSD
- Conclusions
- Q&A
Who we are
About Xinnor

- Founded in Haifa, Israel, May 2022
- Background: 10+ years of experience with software RAID design and mathematical research
- Mission: to be the fastest RAID Engine
- Team: Around 40 people; >30 are accomplished mathematicians and industry talents from Global Storage OEMs
- >20 selling partners worldwide
- >100PB of end-customers data

Technology partners

[Images of technology partners logos]
Xinnor’s xiRAID unique architecture

CPU assisted RAID (AVX)

Lockless data path

Application 150 GiB/s

CPU
- Core 1
- Core 2
- Core 3
- Core N

- No memory cache
- Equally low core load
- No blocking

7 GiB/s SSD

7 GiB/s SSD

7 GiB/s SSD
PCle Gen5: great performance…
if properly handled
PCle Gen5: a new wave of modern Servers

- 4th Gen Intel and 3rd Gen AMD Epyc processors.
- 12-24 PCle Gen5 drives.
- **Theoretically** capable of
 - >60 million IOPs
 - 300GB/s throughput.

Warning: Fault Tolerance Needed!
Test Environment

- CPU: Beaverton/Intel Xeon Gold 6430 (32 Cores x2)
- Memory: 2TB (DDR5 4800 64GBx32)
- OS: Oracle Linux 8.8 (kernel 5.4.17-2136.322.6.2.el8uek.x86_64 and kernel-ml-6.5.1-1.el8)
- Benchmarking tools: fio, bdevperf
Test Environment

Single Drive Performance

Random Read: 2.7M IOPS
Random Write: 0.3M IOPS
Sequential Read: 14 GBps
Sequential Write: 7 GBps

Theoretical Performance with 12-Bay Chassis with RAID

Random Read: >30M IOPS
Random Write: >3.9M IOPS
Sequential Read: >150 GBps
Sequential Write: >80 GBps
First challenge: performance scalability

4k Random Read
Single drive performance: 2.7M IOPS
Expected performance over 12 drives: > 30M IOPS

Reality:
Trying different settings to find the optimal scenario

- Libaio
- Polling mode driver+IO Uring+hipri=1+disabled multipath
- Continuous polling mode driver+IO Uring+hipri=1+disabled multipath
- SPDK
- Interrupt coalescing

![Graph showing M IOPS vs. Number of Drives for different settings](image)
Interrupt coalescing: technical dive

![Graph of M IOPS vs Interrupt Coalescing Time-Out](image1)

![Graph of % Sys CPU, Load vs ICT](image2)

![Graph of irq_handler_entry, Millions of starts over 40 sec](image3)
Bad news 😞

- Interrupt coalescing is OKish only for high workloads:
 - QD = 16+ Number of Jobs = 16+
 - QD = 1 or Number of Jobs = 1: Interrupt coalescing should be switched off!!!

- Polling mode drivers and io_uring with hipri=1 can “eat” your CPU

- as well, SPDK is not the “REMEDY” for all the cases:
 - Great solution for VirtIO, vfio-user and NVMEoF networks, but…
 - …no support of Linux block devices, and…
 - …significant performance degradation with ublk target
RAID Benchmark with PCIe Gen5 SSD
RAID Engines under review

1. xiRAID (Linux kernel mode)
 - Kernel space driver: expose Linux block devices
 - User space functionality for management

2. xiRAID (Linux user space):
 - SPDK: supports export via VirtIO, vfio-user and NVMEoF
 - Evaluated with SPDK fio plugin
 - User space functionality for management

3. mdRAID (Linux kernel mode only)
 - Kernel 5.4
 - Kernel 6.5 - New

4. RAID5F (Linux user space) – Intel SPDK RAID
 Not applicable due to lack of enterprise readiness
How to compare different RAIDs: workloads

1. **Random READ:**
 - in normal and degraded

2. **Random WRITE:**
 - in normal mode and degraded

3. **Sequential WRITE:**
 - in normal mode
 - Full stripe AND not-aligned sequential write

4. **Sequential READ:**
 - in normal and degraded

CPU consumption matters
How to compare: metrics

1. **RAID efficiency** = RAID performance / Raw drive performance
2. **RAID CPU efficiency** = RAID performance / CPU consumption

RAID engines comparison

3. **RAID relative CPU efficiency**
 - (RAID Engine1 performance/ CPU consumption)
 - (RAID Engine2 performance/ CPU consumption)
 If >1, RAID1 is better than RAID2

4. **RAID relative latency efficiency**
 - (RAID Engine2 99,9% latency)
 - (RAID Engine1 99,9% latency)
 If >1, RAID1 is better than RAID2
BASELINE definition

- BASELINE is NOT a single number,
- It is the theoretical RAID performance based on:
 - measured RAW drives performance in SPDK
 - Specific workload
- and taking into consideration the RAID penalty

<table>
<thead>
<tr>
<th>N Jobs/IODepth</th>
<th>BASELINE, IOPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>40 966</td>
</tr>
<tr>
<td>16/16</td>
<td>9 514 053</td>
</tr>
<tr>
<td>32/32</td>
<td>23 557 220</td>
</tr>
<tr>
<td>64/64</td>
<td>34 982 233</td>
</tr>
</tbody>
</table>

EXAMPLE: RANDOM READS BASELINE
Random Read RAID5x2. RAID Efficiency

Normal operation

Degraded mode
Random Read RAID5x2. RAID CPU relative efficiency (in relation to MDRAID 5.4)

Normal operation

<table>
<thead>
<tr>
<th>NUMJOBS / IODEPTH</th>
<th>MDRAID, kernel 6.5</th>
<th>xiRAID</th>
<th>xiRAID SPDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>16/16</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>32/32</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>64/64</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Degraded mode

<table>
<thead>
<tr>
<th>NUMJOBS / IODEPTH</th>
<th>MDRAID, kernel 6.5</th>
<th>xiRAID</th>
<th>xiRAID SPDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1.1</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>16/16</td>
<td>3.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>32/32</td>
<td>7.3</td>
<td>17.5</td>
<td>68.8</td>
</tr>
<tr>
<td>64/64</td>
<td>17.5</td>
<td>5.5</td>
<td>55.7</td>
</tr>
</tbody>
</table>
Random Read RAID5x2. RAID relative latency efficiency (in relation to MDRAID 5.4)

Normal operation

<table>
<thead>
<tr>
<th>NUMJOBS / IODEPTH</th>
<th>MDRAID, kernel 6.5</th>
<th>xiRAID</th>
<th>xiRAID SPDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>16/16</td>
<td>1.0</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>32/32</td>
<td>1.1</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>64/64</td>
<td>1.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Degraded mode

<table>
<thead>
<tr>
<th>NUMJOBS / IODEPTH</th>
<th>MDRAID, kernel 6.5</th>
<th>xiRAID</th>
<th>xiRAID SPDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1.1</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td>16/16</td>
<td>1.5</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>32/32</td>
<td>3.1</td>
<td>0.3</td>
<td>3.1</td>
</tr>
<tr>
<td>64/64</td>
<td>5.6</td>
<td>0.3</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Random Write RAID5x2

RAID Efficiency

RAID Relative CPU Efficiency vs MDRAID 5.4
A Single RAID Scalability in RAID 5

The maximum performance numbers achieved under growing workload
No NUMA NODE affinity
bs=4k
Sequential write RAID6 (10+2). RAID Efficiency

Full Stripe Writes

Unaligned Writes
Sequential write RAID6. RAID CPU relative efficiency (in relation to MDRAID 5.4)

Full Stripe Writes
Sequential write RAID6. RAID CPU relative efficiency (in relation to MDRAID 5.4)

Unaligned Writes

<table>
<thead>
<tr>
<th>NUMJOBS</th>
<th>MDRAID, kernel 6.5</th>
<th>MDRAID, kernel 6.5, NO BITMAPS</th>
<th>xiRAID</th>
<th>xiRAID SPDK</th>
<th>xiRAID, MERGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>5.2</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>6.2</td>
<td>9.3</td>
</tr>
<tr>
<td>8</td>
<td>6.7</td>
<td>7.1</td>
<td>1.0</td>
<td>10.5</td>
<td>11.1</td>
</tr>
<tr>
<td>16</td>
<td>9.1</td>
<td>11.0</td>
<td>10.9</td>
<td>13.2</td>
<td></td>
</tr>
</tbody>
</table>
Sequential read Degraded RAID6 (10+2). RAID Efficiency and RAID CPU relative efficiency

RAID Efficiency

<table>
<thead>
<tr>
<th>NUM JOBS</th>
<th>BASELINE</th>
<th>MDRAID, kernel 5.4.17</th>
<th>MDRAID, kernel 6.5</th>
<th>xiRAID</th>
<th>xiRAID SPDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>5.4</td>
<td>7.8</td>
<td>9.9</td>
<td>11.6</td>
</tr>
<tr>
<td>4</td>
<td>1.1</td>
<td>1.1</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>16</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

CPU Efficiency

<table>
<thead>
<tr>
<th>NUM JOBS</th>
<th>BASELINE</th>
<th>MDRAID, kernel 5.4.17</th>
<th>MDRAID, kernel 6.5</th>
<th>xiRAID</th>
<th>xiRAID SPDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>5.4</td>
<td>7.8</td>
<td>9.9</td>
<td>11.6</td>
</tr>
<tr>
<td>4</td>
<td>1.1</td>
<td>1.1</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>16</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Final considerations
Conclusions

1. Proper system tuning is critical to enable performance scalability on PCIe Gen5 environment
2. RAID benchmarks should look at multiple variables:
 - Normal and degraded mode
 - Different workloads
 - Performance vs CPU and latency efficiency
3. MDRAID 6.5 provides performance improvements in normal operations but not in degraded mode and sometimes at the expense of CPU and latency efficiency
4. For Block Devices, xiRAID (kernel) outperforms by multiple times MDRAID 6.5, particularly in degraded mode, random and sequential write and in CPU and latency efficiency.
5. In virtualized environments and NVMs, with xiRAID SPDK we can exploit almost full theoretical PCIe Gen5 performance
Please take a moment to rate this session.

Your feedback is important to us.